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Fano lineshape parameter �q� reversal is a proxy for interaction beyond the usual interference of indistin-
guishable quantum pathways. Reversal of the Fano parameter has been observed recently in quantum dots
�QDs�. We show that such a profile reversal may come about from the interaction of interloping over-the-top
states �shape resonances� in the “nonresonant” channel with the QD bound states, interacting with the con-
tinuum channel �Feshbach resonances�. Using this mechanism, we show that with minimal modifications of the
QD parameters, we can affect the presence or absence of interloping resonances and hence lineshape profile
reversal, as a way of coherence engineering.
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Quantum dots �QDs� are lithographically fabricated semi-
conducting structures in which electrons are confined in
three dimensions.1–3 The confinement of electrons in QDs
leads to the quantization of charge-Coulomb blockade �CB�
and energy-level structure reminiscent of energy-level dia-
gram in atoms. In a similar analogy, coupled QD form arti-
ficial molecules, whose molecular bonding can be
controlled.4 Transitions between QD levels can be induced
and controlled by applying a magnetic field or manipulated
by electrostatic tuning of the electronic phase.5 Because QDs
are fabricated and maintained in continuous contact with the
environment, decoherence is a major concern. Electron
dephasing has implications for proposals, which aim to inte-
grate cascades of such nanodevices into larger circuits for
executing scalable quantum logic operations. The interaction
between the localized and delocalized electrons in QDs and
other mesoscopic systems, such as in a QD embedded in
Aharonov-Bohm �AB� rings6,7 and in nanotubes,8 bears re-
semblence to the interaction of discrete and continuum elec-
trons in atoms or molecules undergoing collision or
photoabsorption.9–11

Fano resonances, ultimate proxies for the existence of
quantum interference, ubiquitous already in atomic and mo-
lecular systems, have also been observed when magnetic im-
purities are introduced12 in quantum dots6,7,13–15 and carbon
nanotubes.8 The Kondo effect, which arises from the interac-
tion of electrons in a metal and a magnetic impurity, leads to
charge and spin localization around the impurity atom as
resonances.16,17 The famous “0.7 anomaly,” the previously
unexplained shoulder in conductance of electrons through
constrictions—quantum point contacts �QPCs�—has been as-
sociated with the existence of quasibound states in the
QPC.18,19 Fano modulations, because they arise from coher-
ent interference, could influence the operation of spin-filter
devices,20,21 which aim to perform spin polarization using
electrical means only.

A unique feature of Fano interference resonance is the
so-called profile, or q reversal, whereby the asymmetry of
Fano lineshapes changes. The Fano q reversal, an observable
signature not just of quantum interference but also of channel
interaction, has been studied and observed in atomic and
molecular physics10,11 and has been linked to complicated

interloping or interferometric interaction between quantum
continuum channels and electronic states. Recently, conduc-
tance measurements in a quantum dot embedded in an AB
ring6,7 observed a reversal of Fano resonance profile in the
CB regime, where Coulombic oscillations in QD in one AB
arm are interfered with the direct conductance in the other
AB arm. Other measurements of electron transport in a one-
lead QD in a two-dimensional �2D� heterostructure7,15

�2DEG� observed also a reversal of Fano resonances, in the
CB open dot regime.

In this work, we demonstrate that the Fano q reversal
occurs in QDs, in the open dot regime, through an interlop-
ing interaction between over-the-top shape resonances,
which appear in the “nonresonant” open channels and Fesh-
bach resonances, which exist in the “resonant” closed chan-
nels �Fig. 1�. A nonresonant channel could be the source-
drain leads and a resonant channel could be the discrete
levels in a QD. We show that with minimal modifications of
the QD geometry, we could induce Fano lineshape profile
reversal and hence alter the electron transport in dramatic
fashion.

The asymmetric profile of these resonances is a measure
of the degree of configuration interaction, and Fano22 was the
first to provide an analytical expression for the spectral in-
tensity,

I��� = I0
�q + ��2

1 + �2 , �1�

where I0 is some background intensity, � is a reduced energy
which vanishes at the position of the resonance, and q is the
Fano profile parameter, a measure of the continuum and dis-
crete configuration interactions. When q→0, a resonance dip
or window appears, and when q→�, the familiar Lorentzian
profile is obtained. A positive �negative� value of q indicates
that the intensity of the line falls �rises� as the energy is
increased from �=0.

Consider a model of a two-dimensional rectangular QD of
width WQD and length L connected to two leads of width W
�Fig. 1�. Our model is constructed on a single-electron scat-
tering picture—the many-body effects are obviously at
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play—but by focusing on the quantum interloping interac-
tion, we will show that, nevertheless, complex Fano line-
shape reversal occurs. The potential inside this quantum
waveguide �QWG� is zero and infinite elsewhere. We study
the scattering of electrons from the left lead �LL� through the
QD and out of the right lead �RL� and calculate the trans-
mission spectrum of such a monoenergetic beam of electrons
in the S-matrix formalism.23 The QWG is sectored into the
LL and RL and QD regions, for which analytical solutions to
the Schrödinger equation exist,

�L�x,y� =� 2

W
�

n

sin�n�y

W
��an

Lbn
L

bn
Ran

R�� eiknx

e−iknx� ,

�QD�x,y� = �
m

� 2

WQD
sin�m�y

WQD
��cneiqmx + dne−iqmx� ,

�2�

where momentum components in the transverse modes n and
m in the RL and LL, and in the QD, respectively, are

kn
L,R = �2m*E/�2 − �n�/W�2,

qm = �2m*E/�2 − �m�/WQD�2, �3�

and m* is the effective mass of the electron taken to be that
of an electron gas in a GaAs substrate, i.e., m*=0.067 a.u.
Once the wave functions and their derivatives have been
matched at the sector boundaries, the S-matrix connecting
the outgoing flux to the incoming flux is constructed as

�b�L

b�R
� = 	S11 S12

S21 S22

�a�L

a�R � . �4�

The transmission from the LL mode n to all the RL modes
can then be calculated24 as follows:

Tn = �
m

km
R + km

R*

kn
L + kn

L* �S21�m,n · �S21
* �m,n. �5�

An immediate observation, from the form of the numerator
in the above fraction, is that only open channels �modes� in
the RL contribute to the transmission. In order to elucidate
the underlying physics, we restrict ourselves to a range in
energy where there is only one open channel in the left and
right leads.

Consider an electron moving from the left lead, traversing
the QD to reach the right lead. The motion in the y direction
is restricted by the infinite walls of the QWG, allowing us to
construct an effective potential for the electron current pass-
ing through the QD from x=−� to x= +�, Vn

ef f�x�
=�2�2n2 / (2m*W�x�2), where the mode number n enumerates
the different channels and W�x� is the change in the QWG
width as the electron advances from left to right. The cou-
plings between the different channels are the usual derivative
couplings in the Born-Oppenheimer approximation,25 but are
provided here through the nondiagonal elements of the S
matrix, which are proportional to the transverse-mode over-
lap integrals. Each channel is described by a finite square
well of depth
�Vn

ef f =�2�2n2 /2m*�1/W2−1/WQD
2 � and of length L.

If the width of the leads, W, and the QD, WQD, do not
differ much, the square-well channels will be separated in
energy from each other. In practice, W	WQD and therefore
the channels interlay. This interlaying of channels is the ori-
gin of the rich and complicated transmission spectrum cross
sections in QWG �Fig. 1�c��. Still, the asymmetric profiles
that one observes in the transmission spectra generally have
the same sign of the q parameter,15 signaling the absence of
an interloping effect and raising the question as to what cir-
cumstances bring about a change in the sign of q.

Infinite number of transverse modes �channels� in two di-
mensions can produce an arbitrarily complicated transmis-
sion spectrum. The essential physics of channel interaction
and quantum interference that leads ultimately to the
q-reversal phenomenon can be as well understood by simpli-
fying the discussion to the scattering of electrons from only
two channels. This means truncating the sums in Eqs. �2� to
two terms in m and n. This truncated model contains many of
the elements of interaction and interference in the problem.

Figure 1�c� shows the transmission spectra for the rectan-
gular QD, as described above. A reversal of the sign of q
occurs at E42 meV. The positions of the shape resonances
in the first channel �solid lines� and of the bound states in the
closed channel �dashed lines� are also marked. The bound-
state positions serve as the zeroth-order approximation to the
Feshbach resonance positions. The shape resonances are usu-
ally associated with the peaks in the transmission spectrum,
as can be seen from a single-channel approximation compris-
ing of Lorentzian peaks centered around the positions of

FIG. 1. �Color online� The electron transmission spectrum �C�
through a QWG is modeled as a 2D structure with left and right
leads and a rectangular QD �a�. The first two interacting transverse
modes are shown in �b�, with open �closed� mode in solid �dashed�
line. The profile reversal at an energy of 42 meV in the leads is
from the interaction of an open-channel interlopper resonance with
closed-channel Feshbach resonances �c�. The positions of open-
channel �solid� and closed-channel �dashed� resonances are indi-
cated. The values of the Fano parameter q are shown in �c� �full
circles�.
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shape resonance �not shown here�. When closed channels
appear, channel interaction obscures this association of the
peaks in the transmission with the shape resonances. Specifi-
cally, at the energy of the aforementioned q reversal, the
transmission goes to zero nearly precisely, at the position of
the shape resonance. An analysis of the poles of the S matrix
for a coupled two square-well model with constant
interaction26 has shown the existence of two different types
of poles which can be related to the open- and closed-
channel poles, respectively,26 and also shows the appearance
of a mirror symmetry in the cross section, centered at spe-
cific energies, for different interaction strengths. In our case,
channel interaction is more complicated, yielding the profile
reversal.

To examine the effect of the shape resonances on the
transmission, we compare the transmission spectrum of the
rectangular QD described above and a smoothed
“rectangular” QD in Fig. 2�a�. For the smoothed QD, the
width of the QWG is given by W�x�=W+0.5�WQD−W�
�tanh 
x−tanh 
�x−L��, where the smaller 
 is, the smoother
the potential becomes. Figure 2�c� shows the transmission
spectra of the smoothed QD for 
=0.005. The profiles ap-
pearing in Fig. 2�c� are resonance dips, sometimes referred to
as antiresonances14,27 corresponding to q�0. By comparing
the positions of the bound states in the closed channel to the
positions of the resonances in the spectrum, the absence of
shape resonances can be confirmed. Thus in a two-channel
approximation of conductance in a smoothed 2D QD, the q
reversal results from the interaction between shape and Fes-
hbach resonances.

The two models presented so far show that Fano q rever-
sal could occur when the over-the-top and Feshbach reso-
nances interact. More generally, the profile’s reversal is the
result of an interference between resonances in the “reso-
nant” channel and resonances in the so-called nonresonant
channel �NRC�. The source of these NRC resonances differs

from system to system; for example, in the model presented
above, they result from the sharp curvature of the potential
and, in the case of the 0.7 anomaly, they result from the
Friedel oscillations in the QPC.19

Although rectangular QDs are of common use in model-
ing different phenomena in 2DEG, see, for example Refs. 28
and 29, the actual form of the potentials in the experiments
are not necessarily sharp. We now wish to explore other pos-
sibilities in which interloping shape resonances can occur in
the smooth model presented above.

Shape resonances can also appear due to barriers in the
potential. These barriers �in the effective potential� can come
about in an experiment as a result of coupling the QD to a
reservoir by tiny leads, i.e., QPC or by some imperfection,
causing a potential variation in the leads. A possible imper-
fection is when part of the lead is “thinner” than the rest of
the lead, leading to barriers in the effective potential. We
evaluate the transmission through a third structure, which
simulates the possible effect of a small perturbation in the
leads on the transmission in the smooth QD model discussed
above �see Figs. 3�a� and 3�b��. The difference between the
transmission spectra of the slightly perturbed and unper-
turbed smooth QDs is remarkable considering the size of the
perturbation. An inspection of the spectrum for this model
shows a q reversal around E53 meV. As discussed above
for the case of the rectangular QD, a one-to-one correspon-
dence between the positions of spectral resonances �Fig.
3�c�� and the positions of noninteracting shape and Feshbach
resonances is tenuous. This is the result, and consequentially
a sign, of strong interaction and quantum interference be-
tween the different resonances, leading in Figs. 1 and 3 to q
reversals occurring nearly at the position of a shape reso-
nance, where the transmission goes to zero.

In summary, we have demonstrated in a series of open
quantum dot simulations that intricate coherent quantum in-
terference patterns, modulated due to strong interloping

FIG. 2. �Color online� A model QWG containing left and right
leads coupled smoothly to a QD �a�. The first two interacting trans-
verse modes are shown in �b�, with the open mode �solid line� and
the closed mode �dashed line�. The transmission spectrum �c� shows
a series of resonance dips which correspond well to the positions of
the bound states in the closed channel, as indicated. No reversal of
the Fano profiles appears.

FIG. 3. �Color online� A smooth QD coupled lead with a small
perturbation �marked by arrows� �a�, which introduces small barri-
ers �marked by arrows� in the effective potential shown in �b�. The
transmission is fully affected by the perturbation �see Fig. 2�, and in
particular, produces a reversal of the Fano profiles. The values of q
are also shown on top of the transmission spectrum �c� �full circles�.
Large �q� values are not shown. The sign of q, however, only
changes after crossing E53 meV.
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channel interaction, result in the electronic transport through
QD. It is shown that shape-induced and over-the-top states in
the nonresonant channels interfere strongly with discrete QD
levels in the closed resonant channels to produce modulation
of transmission probability. We demonstrate that with slight
modifications of the QD geometries, such as introducing
small constrictions in the leads, we could arbitrarily intro-
duce or remove the interloping shape resonances and hence

create or destroy lineshape reversal in the transport conduc-
tance. This offers intriguing possibilities in coherence engi-
neering in QWG systems.
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