Spectrally resolved measurement of the downwelling longwave radiance from an high-altitude station Spectroscopic issues in the data analysis

Giovanni Bianchini

gb@ifac.cnr.it

Istituto di Fisica Applicata "Nello Carrara"

 10^{th} international HITRAN conference, Cambridge, Massachussets, 22-24 June, 2008 – p. 1

Outline

The REFIR instrument

- Overview of the REFIR-PAD spectroradiometer
- Level 1 and level 2 data analysis of REFIR-PAD measurements
- The winter 2007 ground-based campaign
 - Retrieval of atmospheric variables from REFIR-PAD data

Spectroscopic issues in the data analysis

- Three case studies in clear sky conditions, varying PWV
- Comparison with residuals from balloon-borne measurements Conclusions

The REFIR-PAD instrument

Radiation Explorer in the Far InfraRed - Prototype for Application and Development

REFIR-PAD characteristics

Instrument specifications:

Instrument type	Mach-Zender non-polarising FTS	
Beam splitter	Ge-coated Mylar (0.85 μ m/2 μ m)	
Spectral bandwidth	$100-1400 \text{ cm}^{-1}$	
Spectral resolution	up to 0.25 cm^{-1} (double-sided)	
Optical throughput	$0.01 \text{ cm}^2 \text{sr}$	
Field of view	133 mrad	
Detector type	Pyroelectric (DLATGS)	
Acquisition time	30-120 s	
Acquisition frequency	20 kHz	
Weight	55 kg	
Power consumption	\sim 50 W	

 \rightarrow Room temperature operation \leftarrow

Level 1 data analysis

- Data resampling on reference laser fringes (Brault)
- Transformation and low-resolution phase correction
- Calibration through on-board reference blackbodies
- Estimation of random (NESR) and systematic (calibration error) components of measurement uncertainty

ACPD, 8, 367-401, 2008

Sample spectra

Typical Downwelling Longwave Radiance spectra resulting from 10-minute REFIR-PAD acquisition sequences, 0.5 cm^{-1} resolution

- Wide spectral range, $\sim 300 - 1100 \text{ cm}^{-1}$, depending on water vapour content for the FIR region
- SNR better than 100 in the FIR for a single acquisition sequence (4 atmospheric spectra + 4 calibrations)

Level 2 data analysis

Forward model:

- LBLRTM version 11.3 radiative transfer model
- HITRAN 2004 spectroscopic database with 2006 updates (H₂O, HNO₃, N₂O)
- MT_CKD version 2.1 continuum model

Retrieval code:

- Least χ^2 routine based on the MINUIT function minimization libraries (CERN)
- no constraints on fitted variables

Sensitivity to parameters

Analysis of Jacobian matrices for H_2O and Temperature:

- Spectral range used for retrieval: 300-650 cm⁻¹
- Data show sensitivity to atmospheric parameters up to 7-8 km

Vertical resolution

SVD decomposition of H₂O and T Jacobians, MLW standard atmosphere

Singolar Value Decomposition of Jacobian matrices:

- Main retieval product (maximum sensitivity): total Precipitable Water Vapour (PWV)
- Vertical resolution 1-2 km: limited information on vertical profiles (2-3 points per variable)
- Presence of clouds give an extra atmospheric variable to be considered in the retrieval

Fitting without clouds

No cloud contribution in forward model \rightarrow overestimation of "high" water vapour \rightarrow wrong PWV

Effect of clouds on retrieval

Measurements were performed only in visually clear sky conditions \rightarrow possible problem due to subvisible cirrus clouds

- Cloud model included in forward model (LOWTRAN 7)
- Only one parameter retrieved: cloud optical density
- No sensitivity to cloud geometry if cloud layer above 7-8 km

Fitting with clouds

Added effect of clouds in forward model \rightarrow correct PWV and vertical structure

The ECOWAR-COBRA campaign

EC COBRA: Campa	COWAR: Eart gna di Ossei	h <mark>CO</mark> oling by <mark>WA</mark> ter vapo vazioni della Banda Rotaz	u <mark>R</mark> emission zionale del vapor d'Acqua	
Spectrally resolved rotational band (1 (Italian Ministry of U	observations 7 -50 micron) Iniversity and R	s of Earth's emission spec to test models of atmosp esearch, DM n. 287 23 feb. 20	c trum in the water vapour heric radiative transfer 05, project # 2005025202)	
STORE STORE	Institutions		Contact Person	
	University of Basilicata, Dept. DIFA		C. Serio (P.I.) serio@unibas.it	
SAPIENZA UNIVERSITÀ DI ROMA	University of Bologna, Dept. of Physics		R. Rizzi rrizzi@adob.df.unibo.it	
	University of Bologna, Dept. of Physical Chemistry		M. Carlotti carlotti@fci.unibo.it	
Istituto Nazionale di GEOFISICA e VULCANOLOGIA	University of Rome, "La Sapienza", Dept. of Physics		Daniele Fuà daniele.fua@uniroma1.it	
Università degli studi di Bologna Dipartimento di Fisica				
	INGV	G. Muscari muscari@ingv.it		
Dipartimento di Ingegneria e	IFAC/CNR	L. Palchetti L.Palchetti@ifac.cnr.it		
Fisica dell'Ambient	IMAA/CNR G. Pavese pavese@imaa.cnr.it		hr.it	
			istituto di	
DCFI Thanks to the city of Valtournenche				

REFIR-PAD at Testa Grigia

- Instrument installed in a C.N.R.
 high-altitude station in the italian-swiss Alps (3480 m. a.s.l.)
- During the campaign > 60 h of measurements on 7 days were acquired
- Measurements were performed in cold, dry conditions
- Meteorological conditions: mostly clear sky, subvisible cirrus present in few cases, varying PWV

Sample retrieval

REFIR-PAD retrieval results for PWV, vertical water vapour structure and clouds optical density during the 2007 ECOWAR-COBRA campaign

- PWV values measured ranging from
 < 0.5 mm to 3-3.5 mm
- No clouds were detected in about 70% of the measurement time

Clear-sky case studies

Three case studies featuring:

- Three different PWV values measured:
 0.5 mm, 2 mm and 3 mm
- Almost constant PWV values for the duration of about 20 sequences (~ 3 h)
- Clear sky condition as detected by the retrieval process

Fitting residuals

Validation: synthetic spectra

Test with simulations:

- Synthetic spectra using the same forward model used for retrieval
- Water vapour and temperature profiles interpolated from soundings

Residuals with synthetic spectra

Sensitivity to continuum

Balloon-borne nadir measurements

Stratospheric balloon launched in July, 2005 from Teresina, in the state of Piauì (North-East Brazil), 5.1 S 42.9 W, in mostly clear sky conditions.

Acknowledgements: The CNES balloon launch team.

Flight duration of about 9.5 h, of which 7.5 at the floating altitude of 34 km for a total distance covered of 270 km. First spectrally resolved measurement of the OLR in the far-infrared with uncooled detectors *Atm. Chem. Phys.*, **6**, 5025-5030, (2006)

Nadir vs. zenith radiance

REFIR-PAD sample measurements, radiance units

Nadir vs. zenith residuals

Nadir vs. zenith radiance

REFIR-PAD sample measurements, radiance units

Spectroscopic issues in the far-infrared

- Analysis of REFIR-PAD measured downwelling radiances show evidence of systematic effects above measurement uncertainty
- Tests performed suggest that effects are not due to the instrument itself nor due to the analysis method
- Both continuum model and spectroscopic database issues could be present, solving which could improve greatly REFIR-PAD data products quality

Spare slides

Instrumental line shape

REFIR-PAD instrumental line shape (ILS)

Instrumental line shape as a linear combination of sinc and sinc² Combination coefficient fitted and averaged over multiple spectra

Residuals in literature

Clough, ASSFTS 2003 PWV $\simeq 3 \text{ mm}$

Clough, IRS 2004 PWV $\simeq 0.2 \text{ mm}$

Residuals comparisons

