Polar Mesospheric Clouds and Cosmic Dust: Three years of SOFIE Measurements

SOFIE = the Solar Occultation For Ice Experiment, aboard AIM, NASA's Aeronomy of Ice in the Mesosphere mission

> Marty McHugh, GATS mchugh@gats-inc.com

AIM overview

- NASA Small Explorer mission to study polar mesospheric clouds and their environment
 - Iaunched 25-Apr-2007, into 600 km sun-synch orbit
 - prime mission complete, now in 3 year extended mission

three instruments

- **SOFIE** Solar Occultation for Ice Experiment
- CIPS Cloud Imaging and Particle Size experiment
- CDE Cosmic Dust Experiment

11th International HITRAN

Natural and Anthropogenic Change in Earth's Atmosphere

courtesy Judith Lean

SOFIE overview

SOFIE Data Products

Product	Altitude Range (km)
temperature	1 – 100
carbon dioxide VMR	15 – 100
water vapor VMR	15 – 110
methane VMR	15 – 95
nitric oxide VMR	30 – 140
ozone VMR	15 – 100
particle extinction at 10 wavelengths from 0.328 to 4.98 μ m	15 – 90

Vital Statistics

mass38 kgpower52 Wdate rate21 MB/day

16-Jun-2010

11th International HITRAN

Conference

Cambridge, MA

SOFIE

differential radiometry

Measure the *normalized difference* in attenuation between spectral regions with weak and strong absorption by the target gas

GATS	SOFIE retrieval algorit	hm
	Level 0: Data guality checks	
	 Time conversion Combine science packets into occultation events 	
	 Level 1: Calibration (solar source, gain, background) Signal conditioning (nonlinearity, drift) 	
	 Altitude registration Level 2: Retrieval of geophysical parameters 	
	Level 3:Time versus altitude cross section plots	
	Validation:Each retrieved profile is inspected for quality prior to release.	
16-Jun-2010	11th International HITRAN Conference	Cambridge, MA

SOFIE data products

Level 2:

GATS

- Vertical profiles of Temperature, O₃, H₂O, CH₄, NO, PMC extinction
- Grouped into daily data files (30 events)
- □ Level 3: Time versus height cross section plots for all parameters

Common Volume:

- Sample volume geometry, column O₃, derived PMC properties: Cloud top, peak, and base altitudes; Particle shape, eff.radius, size distribution; vertical column ice abundance
- Each file contains data for an entire PMC season
- **Engineering/performance:** data can be viewed online

http://sofie.gats-inc.com

11th International HITRAN

SOFIE data version history

V1.01, Feb 2008: Initial release

V1.02, Dec 2008

Improved signal conditioning (higher altitudes obtained)

Improved forward model (e.g., added O₃ interference in bands 3&4)

V1.022, Feb 2009

Improved signal drift corrections

Improved solar source corrections (i.e., pointing drift)

Improved altitude registration

Non-LTE temperature retrievals, 3 to 10 K colder, extended to 105 km

V1.03, processing underway, projected release Aug 2010

Corrections to event timing

Simultaneous temperature and CO₂ retrievals

Off-axis FOV

PMC corrections to ozone

11th International HITRAN

SOFIE performance summary

Geophysical Parameter	Precision (83 km altitude) Required / <mark>On-orbit</mark>	Altitude Range (km) Required / <mark>On-orbit</mark>	Vertical Resolution (km) Required / on-orbit
NIR cloud extinction	5x10 ⁻⁶ / <mark>2x10⁻⁸ km⁻¹</mark>	78 – 85 / <mark>75 – 90</mark>	3 / <mark>1.8</mark>
IR cloud extinction	5x10⁻⁵ / <mark>2x10⁻</mark> ଃ km⁻¹	78 – 85 / <mark>75 – 90</mark>	3 / <mark>1.8</mark>
Temperature	5/ <mark>0.5</mark> K	70 – 90 / <mark>15 - 105</mark>	3 / <mark>1.8</mark>
O ₃ mixing ratio	100 / <mark>10</mark> ppbv	78 – 90 / <mark>55 - 100</mark>	3 / <mark>1.8</mark>
H ₂ O mixing ratio	0.6 / <mark>0.1</mark> ppmv	78 – 90 / <mark>15 - 100</mark>	3 / <mark>1.8</mark>
CO ₂ mixing ratio	10 / <mark>?</mark> ppmv	80 – 100 / <mark>68 - 92</mark>	3 / <mark>1.8</mark>
CH ₄ mixing ratio	50 / <mark>5</mark> ppbv	30 – 90 / <mark>15 - 75</mark>	3 / 1.8
NO mixing ratio	53 / <mark>39</mark> ppbv	80 – 95 / <mark>30 - 14</mark> 0	5 / <mark>1.8</mark>
Meteoric Smoke	NA / <mark>2x10⁻⁸ km⁻¹</mark>	NA / <mark>35 - 90</mark>	NA / 1.8

Conference

ice mass density

IR extinction is directly proportional to density. slight dependence on particle shape M_{ice} uncertainties are < 10%. minimum detectable $M_{ice} \sim 0.06$ ng m⁻³. (smallest observed is 0.08 ng m⁻³) HALOE: $M_{ice} > 13$ ng m⁻³, LIDAR: $M_{ice} > 2$ ng m⁻³.

NH 2007 averages

SOFIE: 14 ng m⁻³

Lidar: 47 ng m-3

16-Jun-2010

GATS

PMC measurement highlights

Before AIM, PMCs were considered sporadic layers 1 or 2 km thick.

SOFIE now shows a persistent ice layer up to 10 km thick!

Conference

16-Jun-2010

10 - 100 tons of meteoric material enter Earth's atmosphere per day.

~70% of the incoming meteoroids ablate at ~70 - 110 km altitude, producing meteoric smoke particles (MSPs).

MSPs reside in the stratosphere & mesosphere, with radii of ~0.2 - 10 nm.

MSPs are important to understanding:

- Middle atmosphere neutral and ion chemistry.
- Stratospheric aerosol nucleation (sulfates & PSC).
- Mesospheric ice nucleation (PMC & PMSE).
- Long term accumulation of extraterrestrial material in polar ice.

16-Jun-2010)
-------------	---

11th International HITRAN Conference

16-Jun-2010

www.SpectralCalc.com

11th International HITRAN

Spectral Calc.com

High-resolution spectral modeling

username: *boston* password: *redsox*

