HITRAN Conference Cambridge, 16-18 June 2010

Titan's neutral atmospheric chemistry from the astronomical point of view

Athena Coustenis

LESIA, Observ. de Paris-Meudon, Meudon

Titan, the largest kronian satellite...

Physical parameters: R = 2575 km $m = 1,831 \text{ M}_{Moon}$ Orbital parameters: $a = 1221830 \text{ km} \sim 20 \text{ R}_{Saturn}$ P = 15,95 je = 0,0292

Titan's atmosphere seen by Voyager

Temperature inversion By greenhouse effect below 40 km in altitude

Composition of the atmosphere : * N₂ is the major component (~97%) * CH₄ & other hydrocarbons * H₂ * nitriles •Little oxygen: H₂O, CO, CO₂

•Thermal and chemical structure in the stratosphere of Titan from IR spectra of **CIRS** on the orbiter. •HASI determined temperature, pressure and density in the whole atmosphere during the Huygens descent. •Spectra and images taken by **DISR**, give information on the composition of the surface and constrain the distribution of the aerosols on Titan.

Huygens et Cassini

TOP PLATFORM

FORE DOME

FRONT SHIELD

Gas Major components	Mole fraction			Comments-Ref.			
Nitrogen	N_2	0.97		Inferred indirectly	1 Flasar <i>et al.</i> (2005) from Cassini/CIRS data		
Methane	CH ₄	$1.4 - 1.8 \times 10^{-2}$		Stratosphere (1.2)	1. Flasar et al. (2005) from Huygens/CCMS, data		
		4.9×10^{-2}		Surface (2,3)	2. Tomasko at al. (2005) from Huygens/OCMIS data		
Monodeuterated methane	CH ₃ D	8×10 ⁻⁶		(4)	4. Coustenis et al. (2007) from Cassini/CIRS data		
Hydrogen	H_2	0.0011		(5)	5. Samuelson et al. (1997a) from v $1/1$ KiS data		
Argon	³⁶ Ar	2.8×10^{-7}		(2)	6. I eanby et al. (2006) from Cassini/CIRS data		
	⁴⁰ Ar 4.32×10^{-5} (2) 7. Samuelson <i>et al.</i> (1997b) from V 8. B é zard <i>et al.</i> (1993) from disk-av				 7. Samuelson <i>et al.</i> (1997b) from V1/IRIS data 8. B é zard <i>et al.</i> (1993) from disk-averaged ground-ba 	I/IRIS data reraged ground-based heterodyne mm observations	
		Equator	North Pole		9. Coustenis <i>et al.</i> (1998) from ISO/SWS data 10. Lellouch <i>et al.</i> (2003) from ground-based VLT data at 5 micron		
Hydrocarbons		_	_		11 Marten <i>et al.</i> (2002) from disk-averaged ground-b	ased heterodyne mm_observations	
Ethane	C_2H_6	1.3×10^{-5}	1.7×10^{-5}	(4)	12 Gurwell and Muhleman (2000) from disk average	d mm hataraduna data	
Acetylene	C_2H_2	3.7×10^{-6}	4.0×10^{-6}	(4)	12. Our wen and Wunternan (2000) from disk-average	a min neterodyne data	
Monodeuterated acetylene	C ₂ HD	2×10 ⁻⁹					
Propane	C_3H_8	6.0×10^{-7}	8.0×10^{-7}	(4)			
Ethylene	C_2H_4	1.6×10^{-7}	1.1×10^{-7}	(4)	From Vuitton Waite	et al INMS	
Methylacetylene	C_3H_4	6.4×10 ⁻⁹	1.2×10^{-8}	(4)			
Diacetylene	C_4H_2	1.3×10^{-9}	4.2×10^{-9}	(4)	Ionospheric species	Neutral mole fractions	
Benzene	C_6H_6	3.0×10^{-10}	1.1×10 ⁻⁹	(4)	detected by INMS		
					H ₂	4×10^{-3}	
Nitriles					CaHa	3×10^{-4}	
Hydrogen cyanide	HCN	1.3×10^{-7}	5.5×10^{-7}	(4,6)	C2H4	6×10^{-3}	
Cyanoacetylene	HC ₃ N	3.0×10^{-10}	2.2×10^{-9}	(4)	C ₂ H ₆	1×10^{-4}	
Cyanogen	C_2N_2	5×10^{-10}	9×10^{-10}	(6)	C ₄ H ₂	6×10^{-5}	
Dicyanogen	C_4N_2			Solid form only (7)	HCN	2×10^{-4}	
Acetonitrile	CH ₃ CN	1.5×10^{-9}		(8)	HC ₃ N	2×10^{-5}	
					C-H ₃ CN	1×10^{-5}	
Oxygen compounds					C2H3CN C2H5CN	5×10^{-7}	
Water vapor	H_2O	8×10 ⁻⁹		(9) at 400 km	NH ₃	7×10^{-6}	
Carbon dioxide	CO_2	1.5×10^{-8}	1.9×10^{-8}	(4)	CH ₂ NH	< 1 × 10 ⁻⁵	
Carbon monoxide	СО	$(2-4) \times 10^{-5}$ $(3-6) \times 10^{-5}$		Troposphere (10,11) Stratosphere (1,12)			
Isotopic ratios		82.3±1		(2)			
14 N/ 15 N in HCN	67		(11)	Coustenis & Tavlor			
In N ₂	183±5		(2)				
D/H in CH ₃ D		1.3×10^{-4}		(4)	2008 (WS	(P)	
in HD		2.3×10^{-4}		(2)		/	
in C2HD		1.7×10^{-4}		(4)			

Titan: a world of high interest for planetology and astrobiology studies

Context Dense planetary atmospheres: Observations : Voyager, gd-based, ISO and Cassini-Huygens Titan (N_2, CH_4) , 1,5 bar, 94 K on the surface Long atmospheric paths scale heights of a few tens of km Temperatures difficult to achieve in a laboratory Titan : 70-94 K in troposphere; <200 K in stratosphere Space exploration and instrumentation: Observations : Cassini-Huygens : 2004-2017 Thermal IR : Cassini/CIRS : 7μ m-1mm (resolution up to 0.5 cm⁻¹) Near-IR: Cassini/VIMS : 0,35-5,2 µm (resolution 7-16 nm) Huygens/DISR : 0,48-1,7 µm (resolution: 5-17 nm)

Context

Goals:

Cartography of the chemical composition with high precision

Detect new components with low abundance levels (including isotopes)

Determine the origin and evolution of the planetary bodies

Need for spectroscopic measurements at the right p, T conditions to be able to perform the spectroscopic analysis We study the physical properties in the atmosphere of the giant planets and Titan with radiative transfer calculations

• Using a line-by-line code solving for

- Opacity sources

- Chemical abundances (gas and solid)
- Haze/aerosols
- clouds

– Temperature structure

Titan's UV and near-IR spectrum mainly through ground-based measurements (CFHT, UKIRT, IRTF, Keck, VLT, etc), with the exception of HST and ISO from space.

50 µm

Titan's far-IR spectrum mainly through space observations since 1980: Voyager, ISO and Cassini in the future. (Parts thereof were observed from the ground e.g. by Gillett long before that and also since then).

Discoveries on Titan by Infrared Space Observatory (ISO)

A. Coustenis, A. Salama, B. Schulz, E. Lellouch, Th. Encrenaz, S. Ott, M. Kessler, Th. De Graauw, the ISO Titan Team

680

We have analyzed CIRS observations (nadir and limb) covering the thermal infrared region (10-1500 cm⁻¹)

Since July 2, 2004 : TB-T62 flybys FP3 and FP4 spectra high resolution apodized (0.53 cm⁻¹) or medium resolution (2.5 cm⁻¹) Covering Titan's disk

Telescope Coole

Cassini-CIRS Ta at Titan

Titan North from Ta Flyby Resolution 1.7 cm⁻¹

The v₉ C₂H₆ band at 821 cm⁻¹

Coustenis et al., 2010 with new spectro data by Jean Vander Auwera

Ethane band

Coustenis et al. (2007; 2010)

Propane - Historical Perspective

First identification of C_3H_8 on Titan came from **Voyager IRIS** (Maguire et al. Nature, 1981) Although multiple bands were identified, the S/N was poor, Only the v_{21} band at 748 cm⁻¹ was ever used for VMR determination (papers by Coustenis et al.)

Propane

922 cm⁻¹

1054 cm⁻¹

Coustenis et al. (2007; 2010)

Propane - Summary

- All four bands of propane tentatively identified by IRIS are now clearly seen by CIRS at much higher S/N.
- In addition 2-3 further bands have now been identified on CIRS residuals, enabled by modeling and subtraction of stronger species (CH₄, C₂H₆).

PROPANE BANDS ON TITAN								
Wavenumber	Band	IRIS	CIRS					
748	v21	Y	Y					
860	ν8	N	MAYBE					
922	v16	Y	Y					
1054	v15	Y	Y					
1157	ν7	Y	Y					
1338	v 14	N	Ν					
1376	v13	Ν	Y					
1472	v19	N	Y					

Strong increase in the North : HCN,HC3N,C3H4,C4H2,C2H4,C6H6 Small increase for: C2H2, C2H6

Flasar et al. (2005)

Flasar et al. (2005)

New detections - Isotopic Ratios

Detection of ${}^{13}CH_3D(v_6)$ on Titan

The intensity of the v_6 band of ${}^{13}CH_3D$ was not measured

The v_7 and v_{20} propane bands exist in this region but are not analyzed due to lack of a line-byline database only band model

Bezard et al. (2007)

Detection of C₂HD

Coustenis et al., 2008

¹³C in HC₃N: H-C=C-C=N

- Cyanoacetylene formed by substitution of -CN (from HCN) into C₂H₂ and C₂H₄.
- HC₃N has a strong v₅ band @ 663.4 cm⁻¹ due to bending of CH.
- Replace ¹²C→¹³C changes frequency: H¹³CCCN = 658.7 cm⁻¹ HC¹³CCN = 663.1 cm⁻¹ HCC¹³CN = 663.1 cm⁻¹

130 <u>_</u> 120 DATA sr⁻¹/cm⁻ 110 ALL HC N ISOTOPES 100 NO 13C ISOTOPES OF HC.N cm⁻² 90 80 Radiance (nW 70 60 50 30 655 675 660 665 670 Wavenumber (cm⁻¹) Difference spectrum (data-model) 20 H¹³CCCN HC13CCN & HCC13CN 1/cm-1 10 655 660 670 675 665 Wavenumber (cm⁻¹)

Titan Coadded Spectra From 3 Averages

(Jolly et al. JMS, 242, 46-54, 2007)

Modeling implies ${}^{12}C/{}^{13}C \sim 78 \pm 12$, in line with Huygens GCMS (82.3 ± 1). *Potential* to discriminate between C from HCN and C₂H₂.

Jennings et al., 2008, ApJL

Isotopes of CO₂

- CO_2 has been mapped via v_2 band @ 667 cm⁻¹.
- Stratospheric abundance ~ 10⁻⁸.
- Recently we have detected the isotopic emission of ¹³CO₂ @ 648.5 cm⁻¹ (6-σ – detection).
- ... and *probably* the $C^{18}O^{16}O$ emission at 662.5 cm⁻¹ (3- σ detection, σ = NESR only).

Nixon et al., 2008, ApJL

Retrieved isotopic ratios are ${}^{12}C/{}^{13}C \sim 84 \pm 17$, in line with Huygens GCMS (82.3 ± 1), and ${}^{16}O/{}^{18}O$ ~ 346 ± 110, perhaps 1.5x enriched versus terra.

Summary of CIRS isotopic detections

		SINGLE I.	DOUBLE ISOTOPES						
	D	13C	15N	180	13C2	D13C			
Hydrocarbons									
CH4	D/H ~ 1.2E-4 (Coustenis 07)	12C/13C ~ 77 (Nixon 08)				D/H ~ 1.3E-4 12C/13C~ 82 (Bezard 07)			
C2H2	D/H ~ 1.8E-4 (Coustenis 08)	12C/13C ~ 85 (Nixon 08)			POSSIBLE				
C2H4		POSSIBLE							
C2H6	POSSIBLE	12C/13C ~ 90 (Nixon 08)							
C3H4, C4H2		POSSIBLE							
Nitriles									
HCN		12C/13C ~ 75 (Vinatier 07)	14N/15N ~ 56 (Vinatier 07)						
HC3N		Y- H13CCCN Y- HC13CCN Y- HCC13CN (Jennings in	UNLIKELY DUE TO SPECTRAL RESOLUTION						
Other									
CO2		12C/13C ~ 84 (Nixon subm)		160/180~346* (Nixon subm)					

*Tentative
Unidentified features

The near IR spectrum of Titan

Principal Absorbing Gases in Titan's Atmosphere

Detected and searched-for molecules on Titan

Species	IUPAC name	Common name	Molar mass (g mol ⁻¹) ^b	
C ₂ H ₄	ethene	ethylene	28.0532	
C_2H_2	ethyne	acetylene	26.0373	
CH₃C₂H	propyne	methyl-acetylene	40.0639	
C ₄ H ₂	1,3-butadiyne	diacetylene	50.0587	
C ₆ H ₆	cyclohexatriene	benzene	78.1118	
HCN	formonitrile	cyanide	27.0254	
CH₂NH	methyleneimine	-	29.0413	
CH3CN	ethanenitrile	acetonitrile	41.0520	
C ₂ H ₃ CN	2-propenenitrile	acrylonitrile	53.0627	
HC ₃ N	2-propynenitrile	cyanoacetylene	51.0468	
C ₂ N ₂	ethanedinitrile	cyanogen	52.0349	
C ₄ N ₂	2- butynedinitrile	dicyanoacetylene	76.0563	

Constituent	First detection/ range/Means	Ref. of first detection
Major		
Molecular nitrogen, N ₂	Voyager Radio occultation; UV	1,2
Nitrogen, N	Voyager, 1134 Å multiplet	2
Methane, CH ₄	Ground-based, UV and IR : 6190&7250 Å. 1.1&7.7 um	3,4,5
	Ionosphere with Cassini/INMS	6
Monodeuterated methane, CH ₃ D	Ground-based at 1.65 and 8.6 µm	7,8
Hydrogen , H	V1, 1216 Å	2
Hydrogen, H	Ground-based, 3-0 S(1)	4
2	Ionosphere, Cassini/INMS	6
$\operatorname{Argon}, (\operatorname{Ar}^{36}, \operatorname{Ar}^{40})$	Cassini-Huygens/GCMS	9
Minor		
Ethane, $C_{2}H_{6}$	Ground-based, 822 cm ⁻¹	10,11
Acetylene, $C_2 H_2$	Ground-based, 729 cm ⁻¹	7,12
	Ionosphere, Cassini/INMS	6
Monodeuterated acetylene, C ₂ HD	Cassini/CIRS, 678 cm ⁻¹	13
Propane, $C_{3}H_{8}$	V1/IRIS, 748 cm ⁻¹	5,14
Ethylene, $\vec{C}_{2}\vec{H}_{4}$	Ground-based, 950 cm ⁻¹	7
Methylacetylene, CH ₃ C ₂ H	V1/IRIS, 328, 633 cm ⁻¹	5,14
Diacetylene, $C_4 H_2$	V1/IRIS, 220, 628 cm ⁻¹	15
Benzene, C_6H_6	ISO and Cassini/CIRS, 674 c m ⁻¹	9,13,16
Hydrogen cyanide HCN	V1/IRIS 712 cm ⁻¹	5
Cvanoacetylene, HC N	$V1/IRIS, 500, 663 \text{ cm}^{-1}$	15
Cyanogen, C N	$V1/IRIS, 233 \text{ cm}^{-1}$	15
Dicvanogen, $C_4 N_2$	V1/IRIS, solid form at 474 cm ⁻¹	17
Acetonitrile, CH ₂ CN	220.7 GHz multiplet	18
Carbon monoxide, CO	Ground-based, mm, submm, microwave, infrared	19
Carbon dioxide, CO	$V1,667 \text{ cm}^{-1}$	20
Water, H ₂ O	ISO/SWS, 237, 243 cm ⁻¹	21
Ammonia, NH ₃ , C ₂ H ₃ CN, C ₂ H ₅ CN, CH ₂ NH	Suggested indirectly by modelling Cassini/INMS ionospheric data	22

¹Lindal et al. (1983); ²Broadfoot et al. (1981a); ³Kuiper (1944); ⁴Trafton (1972); ⁵Hanel et al. (1981); ⁶Waite et al. (2005); ⁷Gillett (1975); ⁸Lutz et al. (1981); ⁹Niemann et al. (2005); ¹⁰Gillett et al. (1973); ¹¹Danielson et al. (1973); ¹²Caldwell et al. (1977); ¹³Coustenis et al. (2007); ¹⁴Maguire et al. (1981); ¹⁵Kunde et al. (1981); ¹⁶Coustenis et al. (2003); ¹⁷Samuelson et al. (1997); ¹⁸Bézard et al. (1993); ¹¹Lutz et al. (1983); ²⁰Samuelson et al. (1983); ²¹Coustenis et al. (1998); ²²Vuitton et al. (2006).

Table from Coustenis & Taylor 2008, WSP.

Titan: near-IR bands of methane

* About 3 km-amagat of CH₄ in the atmosphere

* Inhomogeneous path

Brown et al. (2005)

- T= 94 K; p= 1,5 bar at the surface
- T = 70-180 K; p= 100-0,1 mbar in the stratosphere

Full spectrum of Titan in the near-IR: 1-5 μm: Modelling for the surface composition

CFHT/FTS, VLT/ISAAC et ISO: (Coustenis et al., 1995; Negrao, Coustenis et al., 2006, 2007) **First spectrum of Titan in the 3-micron region** (Coustenis et al., 2006)

CFHT/FTS data

We have observed Titan in a series of campaigns from 1991 to 1996 with the Fourier Transform Spectrometer on the CFH Telescope. The 1991-1993 data were previously analyzed in Coustenis et al. (1995). We present here also three new datasets from the 1994, 1995 and 1996 observations, with additional information from the 0.94 micron methane window on Titan.

The atmospheric model

We used in this work the Rannou et al. (2003) radiative and transfer code to analyse this data. This is un updated version of Mckay et al. (1989) code. The update concerns mainly the fractal description of the aerosols. It is a 1D plane parallel model with 70 atmospheric layers, from 0 to 700 km, with a length of about 9.4 km. The model considers inputs on

the aerosol formation

the haze production rate (0.805x10⁻¹³ Kg m⁻² s⁻¹)

the haze production pressure (1.5 Pa)

the aerosol charging rate (20 e⁻ μm⁻¹)

the eddy diffusion coefficient (0)

For the radiative transfer calculation inputs also include the aerosol imaginary refractive index, the methane vertical profile, the methane absorption coefficients and the ground reflectivity.

The methane mixing ratio (as a function of altitude) is defined first at the surface. It remains constant up to the saturation point, then following the saturation curve until the tropopause and remains constant above that level. We fixed the surface methane mixing ratio at 5%, according to recent results from the DISR experiment onboard the Huygens probe (Tomasko et al., 2005), yielding a stratospheric mixing ratio of 1.78% which, although higher than the CIRS results, is still within the error bars presented in Flasar et al. (2005).

Methane absorption coefficients

In this work we compare methane absorption coefficients from line-by-line calculations by Boudon et al. (2006) with coefficients from band models by Irwin et al. (2006), E. Karkoschka (private communication for $\lambda < 1.05$ micron and Karkoschka (1998) for $\lambda > 1.05$ micron) and R. Moreno (updated from Coustenis et al. (1995)). These coefficients are plotted below, calculated for one condition of pressure and temperature.

Fit of the CFHT data (with a constant surface albedo)

We calculated the geometric albedo (using a constant surface albedo) in the different methane windows, and then normalized the geometric albedo value at the center of each methane window. This was done both for the observations (the figure below shows the 1995 data as an example) and for the model, for each set of methane coefficients. The χ^2 factor was calculated for each set of coefficients. Line-by-line calculations by Boudon et al. (2006) and Irwin et al. (2006) band model seem to yield the best results.

Fit of the CFHT data (with a variable surface albedo)

The next step in the comparison of the methane coefficient datasets is the study of their influence on the retrieved surface albedo. For this a fit of each dataset from 1993 to 1996 was performed, using the four sets of methane coefficients at our disposal. The figure below shows an example for the 1995 observations using the Irwin et al. (2006) coefficients. We furthermore show in the same figure four panels indicating the remaining differences between the model and the data in the methane windows.

Surface albedo (1995, GEE)

The figure below serves the purpose of showing the large influence of the methane absorption coefficients in the retrieval of the surface albedo. The Karkoschka and Moreno datasets produce the highest surface albedos. Boudon and Irwin coefficients yield quite similar surface albedos for both the dark and the bright sides of Titan at 1.6 and 2.0 micron. These dramatical differences explain, at least in part, the reasons why various investigators have been reporting such different surface albedo values.

Surface albedo

Surface albedos derived for **Titan's bright and dark** side. The values from the Aug. 17, 1995 dataset are quite compatible with those from the Aug. 2, 1996 observations. Similarly, for the trailing side: the Aug. 5, 1993 data are quite compatible with those inferred from the Sept. 23, 1994 dataset. Given the uncertainties, the leading hemisphere appears signicantly brighter than the trailing hemisphere. The differences of the extreme surface albedo from 233 LCM to 67 LCM are: 340%, 57%, 40%, 44% and 50% at 0.94, 1.08, 1.28, 1.6 and 2.0 microns.

Comparison with the ices

This figure shows the comparison between the retrieved surface albedo, for both the dark and bright side, and the spectra of tholins (Coll et al., 1999), H2O ice (Grundy and Schmitt, 1998), CH4 ice (Grundy et al., 2002), CO2 ice (Quirico and Schmitt, 1997) and NH3 ice (Schmitt et al., 1998). Water ice could explain the form of the surface albedo at longer wavelengths but a darker component (tholins?) is necessary to fit the albedo at shorter wavelengths.

⇒ ISO/SWS and Keck II fit

Huygens Descent and Landing Overview

Data via Cassini: 2h28min of descent and 1h12min on the surface Signal via radio-telescopes : 5h42min, including 3h14min on the surface

Observations with Huygens GCMS

(Niemann et al., Nature, 438, 779-784, 2005)

Detection of various organic compounds in the atmosphere and on the surface: Ethane, acetylene, cyanogen, benzene, carbon dioxide, Argon.

NA SA

Vertical profile of methane in Titan's lower atmosphere

Aerosols and methane bands on Titan from Huygens DISR

Tomasko *et al*. (2008)

Fit of the DISR data: 0.8-1.6 micron

Surface reflectivity measured by DISR (in red) (Tomasko et al., 2005)

- <u>Methane</u> : about 5% at the surface
- **Surface :**
- Dark material
- absorption by water ice + ?

No data available for the CH_4 absorption at $\lambda < 1.6$ micron (theoretical or experimental)

Comparison with band models and DISR data inferences

Comparison with different band models used in analysis of Titan spectra (VIMS, DISR)

- Irwin et al. (2006): not enough absorption

- Good agreement with Karkoschka & Tomasko's (2009) model based on lab and DISR data

a. LSB 5 HC₃N(38-37) Beat Fit 9 +100 MHz S CO(3-2) H¹³CN(4-3) HC15N(4-3) Flux (Jy) 345 345.5 344.5 344 b. USB μ 5 $HCN_{\nu_{a}=1}^{+}(4-3)$ HC₃N(39-38) 5 S HCN(4-3) 0 354 354.5 355 355.5 Frequency (GHz)

Nitriles on Titan at (sub)mm wavelengths

IRAM, Marten et al. 2002

SMA (8 x 6m diameter interferometer, located near summit of Mauna Kea, HI), Gurwell 2004

Titan Saturn System Mission

"...oh brave new world..."

A 2008 TSSM ESA-NASA-JPL study

A. Coustenis, J. Lunine, D. Matson, J-P. Lebreton, K. Reh, Ch. Erd and the Joint Science Definition Team

TSSM mission architecture

Combining

- the orbiter (first of Saturn, with Enceladus flybys, then dedicated to Titan), with
- a hot-air balloon/montgolfière, and
- a North-pole lake-landing probe

Dedicated Titan orbiter will also be used for relay

A hot-air balloon (Titan montgolfière) will float at 10 km above the surface around the equator for at least 6 months (T=83K, wind speed=1-2 m/s) with altitude control

> A short-lived (9 hrs) probe/ lander with chemical analysis package will land in a northern lake (Kraken Mare)

Instrument requirement for composition

BIS will inherit from VIHI (Visible and IR Hyperspectral Imager) on BepiColombo

0.2

0.0

4.8

5.0

5.2

Wavelength (µm)

Reflectance spectra of organic ices

5.4

5.6

07-01121-11

Future investigations in the thermal IR with TSSM

- TSSM/ Thermal IR spectrometer (TIRS): will work in 7-333 micron (30-1500 cm⁻¹)
 - Try to ascertain whether interspecies variations in ¹²C/¹³C are real.
 - Search for new species (CH₃CN, C₃H₆, CH₂CHCH₂...) & isotopes (HC₃¹⁵N, ¹³C₂H₂...)
- Community:
 - Need line data for many bands of propane.
 - Need more accurate line data for most isotopic species.

The case for a submillimeter sounder (SMS)

on the TSSM Titan Orbiter

E. Lellouch, S. Vinatier, P. Hartogh, G. Beaudin, R. Moreno, A. Coustenis et al.

Main science goals

- Determine the 3-D field of temperature, wind, and composition in the stratosphere, mesosphere and lower thermosphere of Titan
- (Enceladus science goals: composition, density, temperature and dynamics of gas plume, but models need to be done)

Titan's submillimetre spectrum seen by Cassini / CIRS (R=0.5 cm⁻¹)

Flasar et al. 2004

Titan's expected spectrum at 1.0-1.3 THz

Detection limit : Typically 1.5 K in 1mn 0.2 K in 1 hr

Titan's expected spectrum at 1.0-1.3 THz HCN CO CH4

THERMAL SOUNDING:

- From CH₄ (uniform) : up to ~500 km
- From CO (almost certainly uniform) ; no homopause uncertainty problem: up to ~800 km
- From HCN (not uniform vertically nor spatially, but feasible through multiple lines incl. isotopes, cf. CO on Venus) : up to ~1200 km

Advantage: *LTE is not a major issue like in IR*

Detectability of C2H3CN and NH3 (models P. Lavvas)

Agnostospheric chemistry

 Study chemistry-dynamics couplings: Obtain 3-D (i.e. altitude-latitude-local time) distribution of known minor stratospheric species and relation to wind field

 Study chemical complexity: Search for and map « INMS species » at deeper
(<900 km) levels: heavy nitriles (HC5N, C2H3CN..., NH₃, CH₂NH, CH3CCH...): calculations show that many species can be detected. More species (HC5N, etc...) TBD

 \rightarrow Make the link between thermospheric and stratospheric chemistry

- Study some specific problems:
 - Origin of oxygen (H₂O, CO)
 - Isotope ratios
 - D/H in HCN and H_2O vs. in CH_4

Titan chemistry from synergy						
of submm with thermal IR						
	Thermal IR	Submm				
Temperature sounding	CH ₄ and N ₂	CH_4, CO, HCN				
	0-550 km	~100 – 1200 km				
Winds	Thermal winds	Direct winds (zonal				
	(zonal)	+meridional)				
		(and thermal winds)				
Composition	Hydrocarbons	Nitriles, some hydrocarbons (CH3CCH, CH2NH)				
	Nitriles (light)					
	CO ₂	$CO, H_2O, NH3$				
	Condensates,	Rare isotopic species				
	isotopes					

Some conclusions and thoughts for further developments

Titan organics that remain to be seen

_

Some organics, as yet unobserved on Titan in the thermal IR, but potentially observable with CIRS and their deduced upper limits in Titan's atmosphere from previous observations.

	Strongest signatures		Upper limit of mean mixing ratio in Titan's stratosphere	
Ster I' a Language I	Frequency	Band strength at	using Voyager	using ISO disk-
Studied compounds	(cm ⁻⁺)	300 K (cm ⁻² atm ⁻¹)	IRIS spectra	average data
Hydrocarbons			_	
CH ₂ CCH ₂	356	65	5×10^{-9a}	2×10^{-9b}
	845	407		
C_4H_4	629	288	7×10^{-10c}	
C_6H_2	622	428	4.4×10^{-10d}	
C_8H_2	621.5	496	4×10^{-10e}	
Nitriles				
CH ₃ CN	362 ¹	4.4		
CH ₂ CHCN	230	10	8.4×10^{-8g}	$<5 \times 10^{-10b}$
	954	100		
CH ₃ CH ₂ CN	207	15	2.5×10^{-7a}	$<1\times 10^{-10b}$
	1075	37		
CH ₃ CH ₂ CH ₂ CN	728/742	3.5	$5 imes 10^{-7a}$	
(CH ₃) ₂ CHCN	538	3.3	$2 imes 10^{-7a}$	
ΔCN	726	19	1.5×10^{-7a}	
	818	34		
CH ₃ CCCN	338	100	1.0×10^{-8a}	
	499	91		
CH ₃ CHCHCN	728	230	2.5×10^{-7a}	$< 5 \times 10^{-10b}$
CH ₂ CHCH ₂ CN	557	64	4×10^{-8h}	$< 5 \times 10^{-10b}$
	942	110		
CH2C(CH3)CN	535	33	7.5×10^{-8h}	$< 5 \times 10^{-10b}$
	928	130		
C_4N_2	614	34.4	5.6×10^{-9i}	
NCCHCHCN (trans)	947	178	1×10^{-8j}	
Other N organics				
CH ₃ NC	526	8.8	1.3×10^{-9k}	
CH_2N_2	419	144	5.0×10^{-9k}	
CH ₃ N ₃	250	9	$5.4 imes 10^{-9k}$	

Flasar et al., 2004

What do we need to interpret our observations

For molecules known to be present

- Line positions for all bands, including hot bands
- Absolute band strength
- Data for most abundant isotopes

> Then data for molecules to be searched

All this in the right conditions of p,T and in N2 and H2-He

Spectroscopic needs

Laboratory measurements -Long pathlength (e.g. CRDS) - p-T range covering Titan's atmosphere

Spectroscopic analyses

band center

- Tetradecade (1,6-1,9 μ m) : still incomplete
- Isodecade (1,3-1,5 μ m) : almost no analysis
- Higher polyades (<1,28 µm) : no analysis

Studies of far wings of CH_4 broadened in N_2

- Laboratory measurements and modeling

- The far wing of v_3 could be a significant source of opacity in the 2.75 μ m window

- Only available measurements are for CH_4 broadened by H_2 (Hartmann et al. 2000)