David Aguilar
(617) 495-7462

Christine Pulliam
(617) 495-7463

pubaffairs@cfa


galactic center Click here to download image(s) for this release
Press Release

Release No.: 2005-02For Release: Monday, January 10, 2005
See-through Galaxy: Revealing the Milky Way's Center
San Diego, CA - The center of our galaxy is hidden behind a "brick wall" of obscuring dust so thick that not even the Hubble Space Telescope can penetrate it. Astronomers Silas Laycock and Josh Grindlay (Harvard-Smithsonian Center for Astrophysics) and colleagues have lifted that veil to reveal a beautiful vista swarming with stars. Moreover, their hunt for specific stars associated with X-ray-emitting sources has ruled out one of two options for the nature of these X-ray sources: most apparently are not associated with massive stars, which would have shown up as bright counterparts in their deep infrared images. This points to the X-ray sources being white dwarfs, not black holes or neutron stars, accreting matter from low-mass binary companion stars.

Their study is being presented today at a press conference at the 205th meeting of the American Astronomical Society in San Diego, Calif.

To peer into the galactic center, Laycock and Grindlay used the unique capabilities of the 6.5-meter-diameter Magellan Telescope in Chile. By gathering infrared light that more easily penetrates dust, the astronomers were able to detect thousands of stars that otherwise would have remained hidden. Their goal was to identify stars that orbit, and feed, X-ray-emitting white dwarfs, neutron stars or black holes - any of which could yield the faint X-ray sources discovered originally with NASA's Chandra X-ray Observatory.

Chandra previously detected more than 2000 X-ray sources in the central 75 light-years of our galaxy. About four-fifths of the sources emitted mostly hard (high-energy) X-rays. The precise nature of those hard X-ray sources remained a mystery. Two possibilities were suggested by astronomers: 1) high-mass X-ray binary systems, containing a neutron star or black hole with a massive stellar companion; or, 2) cataclysmic variables, containing a highly magnetized white dwarf with a low-mass stellar companion. Determining the nature of the sources can teach us about the star formation history and dynamical evolution of the region near the galactic center.

"If we found that most of the hard X-ray sources were high-mass X-ray binaries, it would tell us that there had been a lot of recent star formation because massive stars don't live long," says Laycock. "Instead, we found that most of the X-ray sources are likely to be older systems associated with low-mass stars."

That conclusion comes from a null result: that is, most of the counterparts to the X-ray sources must be fainter than the brightness expected if the X-ray sources had massive companions. Since massive stars are both rare and bright, an association with the X-ray sources would have been easy to spot. Smaller stars are more common and fainter, making it difficult to match them to a specific X-ray source. Analysis of the infrared images found only a chance number of matches between stars and the locations of X-ray sources. Many of those matches likely were due to the crowded field of view.

"The fact that we found no significant excess of bright infrared counterparts means that the galactic center Chandra sources are probably low-mass binaries. Since by far the most common low-mass binaries with X-ray luminosities, spectra, and variability similar to the galactic center Chandra sources are accreting magnetic white dwarfs, we conclude these are the most likely identification," says Grindlay.

If the X-ray sources near the galactic center are accreting white dwarfs, the large numbers of compact low-mass binaries required could suggest that they formed in the very dense star cluster around the galactic center or that they have been "deposited" there by the destruction of globular clusters. Deeper infrared observations and spectra of the sources are needed to make actual identifications and constrain the masses of the accreting compact objects.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu

Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Section Photo