COSMIC SURVEY

What are your ideas about The Universe?

How big?

How far?

How old?

Produced for NASA's Office of Space Science by the Structure and Evolution of the Universe Education Forum

© 2003 Smithsonian Astrophysical Observatory (may be freely photocopied for educational use) 60 Garden Street, Cambridge, MA 02138 http://cfa-www.harvard.edu/seuforum

Cosmic Survey: What are your ideas about the Universe?

Introduction

Many people, adults and students alike, are familiar with the names of objects in space, but have an incomplete mental model of WHERE those objects are in space, their relative size and scale, and how they fit into the cosmic scheme of things. Understanding the sizes and distances of celestial objects can be tricky, since in our everyday experience, the stars all seem the same distance away, and the moon can appear close or far away depending on whether you observe it near the horizon or higher in the sky. And of course most people's knowledge of dim and distant objects such as nebulae and galaxies comes mainly from images in books, where all the images are about the same size with no indication of scale.

In this activity, a three-part questionnaire launches your students on discussions about where objects in space are located, and when they formed — an introduction to the concepts of structure and evolution of the universe. By physically manipulating images of objects in space, students represent their own mental models of space and time.

When you lead discussions with your students, please keep in mind that ideas and insights about the three-dimensional organization of the universe develop gradually. Getting the "right answer" is not as important as the critical thinking skills that students develop as they confront the questions that arise as they struggle with their mental models of the Universe.

This survey can serve as a great pre-unit assessment activity for you to find out how your students think about the Universe, and you can use it to help design follow-up activities that help students to improve their understanding. The Universe! Education Forum has been using this survey as a research tool to help inform future curricula, and we would love to have your feedback. Email us at: seuforum@cfa.harvard.edu.

Time Frame

Part 1: What are your ideas about the Universe?	30 minutes
Part 2: Discussion	30 minutes

Materials Needed

For each student:

- 1 set of 7 different images cut from a copy of the Cosmic Survey Classroom Master
- a pair of scissors

• 1 copy each of the 3 "What are your ideas about the Universe" survey data sheets (How Big? How Far? How Old?)

For the class:

• 8 sets of the 3 "What are your ideas about the Universe" survey data sheets (or use the All-in-One data sheet)

Getting Ready

• Make enough copies of the Cosmic Survey Classroom Master image sheets to have 1 set of 7 images for each student. (There are small sets as well as the large set in case you need to save paper).

Part 1: What are your ideas?

- 1. Hand out copies of the All-In-One survey data sheets and the sets of images. Ask students to cut out the 7 separate images; put their names at the top of the data sheets; and then have them work to answer the survey questions in the following order: How Big? How Far? How Old? (This order represents increasing levels of conceptual difficulty for most students). Collect the students' papers so you can look over their ideas later.
- 2. Organize the class into eight discussion groups of three to five students per group. Give each group a set of 3 survey data sheets. Explain that each team is to discuss the three survey questions and come to an agreement, if possible, on the best order of images for each question. One member of each team should write down and keep track of questions that arise as they order the images.
- 3. Circulate among the groups of students, encouraging them to discuss any disagreements fully and to write down arguments in support of their answers.

Part 2: Discussion

- Lead the class in a discussion about the 3 different survey questions. Play the role of moderator, requiring each group to explain why they chose that order. (Ensure that students are also comfortable saying, "we really didn't know about these objects...") Look below for a discussion of "correct" answers vs. frequent student ideas.
- 2. After discussing each question, poll the students on the alternative orders of images suggested. Do not announce the correct order at this time; students should be encouraged to think for themselves.
- 3. After getting a class consensus on all three questions, let students know the correct answers according to measurements and observations of astronomers.
- 4. You can try this activity again with your students as a post-astronomy unit assessment, to see if their ideas have changed.

Possible classroom follow-up activities could include:

• researching size and distances, and calculating and making scale models of different objects in the universe

• activities measuring distances using angular diameter

• investigating how astronomers can find out about distant objects: what can you learn from light

Thanks to GEMS Earth, Moon, & Stars for the format of this activity.

Universe! Education Forum http://cfa-www.harvard.edu/seuforum Supported by NASA's Office of Space Science

©2003 Smithsonian Astrophysical Observatory

Discussion Notes for Cosmic Survey: Frequent student ideas compared with astronomers' measurements

Question 1: How Big?

The correct order for the 7 images, from smallest to largest is:

Telescope	40 feet long	(~12 meters)
Moon	2 thousand miles diameter	(~3,200 kilometers)
Saturn	75 thousand miles diameter	(~121,000 kilometers)
Sun	875 thousand miles diameter	(~1,408,000 kilometers)
Pleiades	60 trillion miles across the cluster	(~1 x 10 ¹⁴ kilometers)
Galaxy	600 thousand trillion miles across	(~1 x 10 ¹⁸ kilometers)
Hubble galaxies	600 million trillion miles across the cluster	(~1 x 10 ²¹ kilometers)

Students answering this question sometimes wonder whether Saturn is larger than the Sun (since they may know it as a "giant" planet). They also wonder if, in the image of the Pleiades, "are we talking about the sizes of the individual stars, or all the stars in the picture?" You may need to explain that for this picture (and the Hubble galaxies), the challenge of the survey is to figure out the relative size of the "field of view" — all the stars (or galaxies) in the cluster.

Some notes: It's hard to tell the size of objects from many of the images we see, since they look about the same size in the pictures. But the Sun is much larger than Saturn or any of the planets. In fact, a million earths would fit inside the Sun.

Size counts in nature. Objects much larger than Saturn or Jupiter are destined to turn into stars such as our Sun: They collapse under their own weight and grow fiercely hot as their nuclear fires are kindled. At each scale in the Universe, gravity helps shape the structures we see.

Question 2: How Far?

The correct order for the 7 images, from closest to Earth to farthest, is:

Telescope	350 miles above surface of Earth	(~560 kilometers)
Moon	250 thousand miles	(~402,000 kilometers)
Sun	93 million miles	(~1.5 x 10 ⁸ kilometers)
Saturn	790 million miles (at its closest)	$(\sim 1.3 \times 10^9 \text{ kilometers})$
Pleiades	2400 trillion miles	(~4 x 10 ¹⁵ kilometers)
Galaxy	200 million trillion miles	(~3 x 10 ²⁰ kilometers)
Hubble view of galaxies	30 billion trillion miles	(~5 x 10 ²² kilometers)

In this survey question, students often struggle with

- 1. the distance of the Hubble space telescope (after all, it takes images of very distant objects...and while NASA has sent some spacecraft out deep into the solar system, the space telescope orbits fairly close to earth's surface).
- 2. The relative distances of the Sun and Saturn figuring this out requires knowledge about the relative orbits of the planets
- 3. Depending on how much astronomy background students have had, the Pleiades may be placed inside the solar system, or as the farthest objects in space. In general, most students (and adults) have a hard time understanding the relative distances of the last 3 objects.

Universe! Education Forum http://cfa-www.harvard.edu/seuforum Supported by NASA's Office of Space Science ©2003 Smithsonian Astrophysical Observatory

Some notes: How far away is that Hubble Space telescope? Many people believe that it is beyond the orbit of the Moon...but it's actually only 350 miles high. That's high enough for a clear view above the Earth's atmosphere...but low enough to enable it to be serviced by the astronauts aboard the space shuttle.

Many people think the beautiful Pleiades cluster of stars must be further away than a cluster of galaxies, because they look smaller. But all the stars we see in the night sky are much closer than even the nearest galaxy.

A galaxy is a "city" of many billions of stars. Galaxies are so far away that we can't make out the individual stars in them. In fact, the roughly 5000 stars we can see with our naked eyes (including the Pleiades) are just among the closest of the billions of stars in our own galaxy, the Milky Way.

Question 3: How Old?

For this question, the correct order for the 7 images is actually somewhat ambiguous, and the subject of much current astronomical research! A "best response" (one that most astronomers—but not all—might give) is:

Telescope	a few years (1990)
Pleiades	80 million years
Moon	~4.5 billion years
Saturn	~4.5 billion years
Sun	~4.5 billion years
Galaxy	~10 billion years?
Hubble galaxies	~10 billion years?

In confronting this seemingly simple survey question, students are grappling with the big ideas of formation of the solar system, life cycles of stars, and evolution of the universe!

Some notes: Almost all students will grab the Sun, Moon and Saturn pictures together, demonstrating that they, like most astronomers, have a theory about solar system formation. But which is the exact order of age? Current theories of moon formation suggest it was formed by a collision of a Mars-sized object with the Earth, making it slightly younger than the Earth and planets. On the other hand, an astronomer reviewing this activity noted that our picture of Saturn shows well defined rings, which would have formed much more recently than our moon...

We tend to think of stars as having been around for a very long time. In fact our Sun is billions of years old. But new generations of stars, like those in the Pleiades, are continually being born. Most people are surprised to learn the Pleiades stars are only about 80 million years old. If the first dinosaurs ever gazed at the night sky...they wouldn't have seen the Pleiades, which hadn't been born yet!

What's older, sun or Hubble galaxies? Depends on what you mean by "age." The Sun is about 4.5 billion years old. But the Hubble "deep-field" galaxies are among the most ancient and distant objects we can see in the sky. The light from them has taken about 10 billion years to reach us. So they were born long before the Sun. On the other hand, the Hubble deep field galaxies are young! Because light takes time to travel, telescope images of far-away objects let us look back in time. This image shows these galaxies as they were when they formed only a few billion years after the Big Bang...so many of the stars in these galaxies may be younger than our Sun. We're looking at an "old" image of young objects!

Cosmic Survey: What are your ideas about the Universe?

For more information on cosmic structure and evolution, try these web sites:

Universe! Education Forum:

http://cfa-www.harvard.edu/seuforum

This site, hosted by the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, contains information and educational activities related to NASA's space science research into the Structure and Evolution of the Universe.

Imagine the Universe:

http://imagine.gsfc.nasa.gov

This site, from astrophysicists at NASA's Goddard Space Flight Center, offers "a glimpse into the mysteries of our universe...what we know about it, how it's evolving, and the kinds of objects it contains."

Powers of Ten:

http://powersof10.com

From the same folks who created the famous film by this name, this site offers a great introduction to size and scale in the universe.

Chandra X-ray Observatory:

http://chandra.harvard.edu

Chandra is NASA's flagship mission for X-ray astronomy, and one of the "Great Observatories." Find out about black holes and other high-energy regions of our universe.

NASA Probe Studies the Big Bang:

http://map.gsfc.nasa.gov NASA's WMAP satellite (Wilkinson Microwave Anisotropy Probe) has made the first detailed fullsky picture of the oldest light in the universe. Find out what this image tells us about the Big Bang.

CREDITS:

Developer: Mary Dussault

Audience researcher: Erika Reinfeld

Pilot test teachers: Sandra Cameli, Konawaena Middle School, Kealakekua, HI; Eric Fagrelius, Ouray High School, Ouray, CO; Eric Flescher, Northwest Middle School, Kansas City, KS; Anita Honkonen, Lincoln-Sudbury Regional High School, Sudbury, MA; Jim Kernohan, Milton Academy, Milton, MA; Gail Lutz, Northwest Guilford High School, Greensboro, NC; Dick Maki, The Bromfield School, Harvard, MA; Paul Masi, Edith C. Baker School, Brookline, MA; Bruce Mellin, Brooks School, North Andover, MA; Paul Niles, Cape Cod Lighthouse Charter School, Orleans, MA; Michael Richard, Weymouth High School, Weymouth, MA; Charles Peirce, Crystal High School, Carson City, MI; Abigail Schirmer, Fenway High School, Boston, MA.

Reviewers: Roy Gould, Adam Contos, Judith Peritz, Sandra Field-Daly, Freeman Deutsch, Philip Sadler, and members of the Thursday Science Panel at the Harvard-Smithsonian Center for Astrophysics.

This material was produced with support from NASA Grant No. NCC5-261. Permission is granted to freely photocopy these materials for non-commercial, educational use.

Cosmic Survey: What are	e your ideas	about the	e Univers	se?
Question 1: How big?				
You have been provided with images of s in a row, in order of actual size of the smallest is on the left, largest on the righ images.	seven different objec object (or field of ot ht. Write down and	ts in space. Try vjects) pictured. keep track of qu	/ arranging the . Order the ob 	e pictures side by side vjects so that the rrise as you order the
When you are satisfied that you have the	e best order, record t	the names of th	e objects in th	le spaces below.
Objects Ordered by Actual Size				
1. 2. 3.	4.	5.	6.	7.
Smallest in Actual Size				Largest in Actual Size
	UNIVER	SEI		
©2003 Smithsonian Astrophysical Observatory			Universe! Educa http://cfa-www Supported by N	ation Forum .harvard.edu/seuforum ASA's Office of Space Science

Cosmic Survey: Wha	t are you	ır ideas a	bout th	e Univer	'se?
Question 2: How far?					
You have been provided with imag in a row, in order of distance of is on the left, farthest on the right	ges of seven dif the object fror . Write down a	fferent objects n Earth. Orde and keep track	in space. Tr r the objects t of questions	y arranging tl so that the o s that arise as	ne pictures side by side bject closest to Earth you order the images.
When you are satisfied that you ha	ave the best or	der, record the	e names of th	ne objects in t	he spaces below.
Objects Ordered by Distance (from Earth				
1. 2.		4.	5.	6.	7.
Closest to Earth					Farthest from Earth
		UNIVERS			
©2003 Smithsonian Astrophysical Observa	atory			Universe! Educ http://cfa-www Supported by N	ation Forum .harvard.edu/seuforum ASA's Office of Space Science

Cosmic Survey: What are yo	our ideas	about th	ne Univers	e?
Question 3: How old?				
You have been provided with images of seven in a row, in order of age , beginning with the the oldest. Write down and keep track of ques	different object youngest (mos stions that arise	s in space. T t recently forr e as you order	ry arranging the med) object, and the images.	pictures side by side I moving in order to
When you are satisfied that you have the best	c order, record t	he names of t	the objects in the	e spaces below.
Objects Ordered by Age				
1. 2. 3.	4.	5.	6.	7.
Youngest (Most Recently Formed)				Oldest
	UNIVERS	Ē		
©2003 Smithsonian Astrophysical Observatory			Universe! Education http://cfa-www.han Supported by NASA	n Forum rvard.edu/seuforum Vs Office of Space Science

Cosmic Survey: What are your ideas about the Universe?

All-in-One Data Sh	ieet: How	big? How	far? How	old?	
Objects Ordered by Actu	ial Size				
1. 2. Smallest in Actual Size		4.	5.	6. 7. Largest in Actua	al Size
Objects Ordered by Dista	ance from Eart				
1. 2. Closest to Earth	<i>.</i> .	4.	5.	6. 7. Farthest from I	Earth
Objects Ordered by Age					
1. 2. Youngest (most recently for	3. 3.	4.	5.		dest
		UNIV U	ERSEI		

©2003 Smithsonian Astrophysical Observatory

http://cfa-www.harvard.edu/seuforum Supported by NASA's Office of Space Science Universe! Education Forum

Cosmic Survey Classroom Master

Whirlpool Galaxy

Moon

Galaxies

Telescope

Universe! Education Forum

Star Cluster

Saturn

Sun

Saturn

Saturn

Sun

Hubble Space

Hubble Deep Field

Whirlpool Galaxy

Moon

Galaxies

Telescope

Hubble Space

Galaxies

Whirlpool Galaxy

Moon

Hubble Space Telescope

Hubble Deep Field

Images courtesy of NASA; Isaac Newton Telescope; Smithsonian Astrophysical Observatory

Moon

Sun

Saturn

Star Cluster Pleiades

Telescope

