Unveiling the physics of star formation with the SMA:

a decade's restrospective

Anaëlle Maury, SAp-CEA/Saclay France

Herschel has revealed a "universal" filamentary structure in the cold interstellar medium

"Universal" = Ubiquitous + quasi-universal properties (e.g width)

IC5146 : Actively star-forming cloud

~ 75 % of prestellar cores form in filaments, above a (column) density threshold $\Sigma > 150 M_{\odot}/pc^2$

~ 5 рс

PACS 70 μm + SPIRE 250/500 μm

Arzoumanian et al. 2011

Toward a 'universal' scenario for star formation ?

See related chapter for « Protostars & Planets VI » by André, Di Francesco, Ward-Thompson, Inutsuka, Pudritz, Pineda

1) The dissipation of large-scale MHD 'turbulence' generates filaments

2) Gravity fragments the densest filaments into prestellar cores

Role of filaments in massive star formation ?

Disorganized networks ('nests') and dominating 'ridges' Showing relative importance of turbulence vs. gravity (?)

Role of filaments in massive star formation ?

Schneider et al. 2012 Hennemann et al. 2012 How do SMA observations help understanding the properties of:

- Filaments and clumps
- Embedded protostars

Star-formation related publications =45% of SMA papers !

Clumps & Filaments

Disclaimer: I won't discuss chemistry (see Jimenez-Serra's review) the galactic center (see Johnston's talk) magnetic fields (see Qiu's talk)

... but might still exceed my allocated time !

Low mass star formation : kinematics of filaments

In Serpens-South:

- ➤ infall along main filament
- radial contraction of main filament Accretion of background material through subfilaments

See also Tanaka et al. (2013) SMA data under analysis: Nakamura, Kristensen, Maury, Chen +

Massive star formation in massive star forming filaments

G32.03+0.05, Battersby, Myers, Keto, et al. in prep

Hierarchical Fragmentation in the Snake IRDC

Wang et al. (2013)

0.1 pc

Detection limit of 1-3.5 M_{\odot} : 23 condensations. Mass spectrum of condensations : power law with slope $\alpha = 2.0\pm0.2$ turnover at 2.7 M_{\odot} condensation mass.

First study of the CMF.

Hierarchical fragmentation Clump masses are much larger than the thermal Jeans mass, indicating the importance of turbulence and/or magnetic fields in cloud fragmentation - or sub-fragmentation at smaller scales.

Similar to what is found in IRDC clumps G28.34-P1 and G30.88-C2

Chemical differentiation : see Jimenez-Serra's talk

RESOLVING THE NATAL MOLECULAR CLOUD OF A FORMING YOUNG MASSIVE CLUSTER

Projected multi-scale mass maps of the Giant Molecular Cloud (left) and central clump (right) in W49A, obtained from CO-isotopologue line ratios.

In total, the W49 complex contains about 10⁶ Msun in 60pc

50000 Msun in central 3pc

SMA reveals an intricate network of filaments feeding star-building material inward at 2 km/s. Global gravitational contraction with localized collapse in a "hub-filament" geometry. Potential to form a gravitationally bound massive star cluster

> See also SMA observations of W33A by Galvan-Madrid et al. (2010) ... G28.34 by Zhang et al. (2009)

THE GALACTIC CENTER CLOUD G0.253+0.016: A DENSE CLOUD WITH LOW STAR FORMATION POTENTIAL

Widespread SiO emission suggests that the cloud is currently forming in a collision of

several clouds, thus implying a low cloud age

See also Longmore et al. (2012) and Johnston's talk

(J2000.0)

DEC

ALMA identification of a massive protostellar core at the center of a converging network of filaments

Peretto, Fuller et al. 2013, A&A, 555, A112

 $M_{H2}(MM1) \sim 550 M_{\odot}$ in D=0.05 pc:

One of the most massive protostellar core ever observed in the Galaxy !

A possible progenitor of an OB cluster similar to the Trapezium cluster in Orion

Protostars

Disclaimer: I won't discuss chemistry (see Jimenez-Serra's review) outflows in Orion (see Zapata's talk) multiplicity in Class 0 protostars (see Chen's talk) L1448-C (see Hirano's talk) IRAS16293 (see Rao's talk) magnetic fields (see Girart's talk)

... but might still exceed my allocated time !

Conserving the angular momentum during collapse: consequences

Opposing forces to gravity during collapse:

Outward pressure in all directions / Centrifugal force in the equatorial plane

Natural results:

Iterian flattening of the envelope is formation of disk with keplerian motions (viscosity)

Fragmentation of the envelope in components taking away their own angular momentum

if magnetized: launching of a high-velocity jet

The early stages of star formation: properties of embedded protostars

At most limited sub-fragmentation within the cores identified with *Herschel* in nearby clouds

Progenitors of individual stars or binary systems, not "clusters" Herschel ~ 15" resolution at $\lambda \sim 200 \ \mu m \Leftrightarrow \sim 0.02 \ pc < Jeans length @ d = 300 \ pc$

Pezzuto, Sadavoy et al., in prep.

Maury et al. 2010

Candidate First Hydrostatic Cores

See also SMA observations of L1451-mm by Pineda et al. (2008) SMA observations of B1-bN by Hirano & Liu (2014)

The PROSAC survey (Jes Jørgensen, Tyler Bourke, Chin-Fei Lee, Philip

Myers, David Wilner, Qizhou Zhang, James Di Francesco, Nagayoshi Ohashi, Fredrik Schöier, Shigehisa Takakuwa and Ewine van Dishoeck)

PROBING THE INNER 200 AU OF LOW-MASS PROTOSTARS WITH THE SUBMILLIMETER ARRAY

The PROSAC survey

In Class 0 protostars: no keplerian rotation detected

A keplerian disk around the Class 0 Protostar L1527

Class 0 envelopes: conservation of angular momentum ?

Inferred disk sizes ranging over two orders of magnitude from <5 AU to >500 AU. (Yen et al. (2013)

Infall and outflow around HH 212 (Lee et al. 2005): Envelope is dynamically infalling with slow rotation : the kinematics is found to be roughly consistent with a free fall toward the source plus a rotation of a constant specific angular momentum.

SMA unveils the structure of massive protostellar cores

IRAS18360: Qiu et al (2012)

See also : Beuther et al. 2006 in IRAS18089 Keto & Zhang (2009) in IRAS20126

Some rotation signatures but not many.

Difficulties to observationally isolate massive accretion disks from the surrounding dense gas envelopes and the molecular outflows

Circumstellar Disks in Class I protostars

High Vel. (> 0.5 km s⁻¹) Component Keplerian Disk around 0.8 M_{sun}

Low Vel. (< 0.5 km s⁻¹) Component Outer Infalling Envelope with the Decelerated Infalling Velocity ?

L1551: Takakuwa et al. (2013)

Resolving protostellar jets and outflows

See also Bourke et al. (2005) in L1014, Palau et al. (2005) in HH211. Lee et al. (2007, 2008) in HH212 + Hirano's talk

ALMA vs SMA

Complexity of Molecular outflows in IRAS 16293-2422

(Mizuno et al. 1990, Yeh et al. 2008; Rao et al. 2009)

CO 1-0 Quadrupolar outflow at large scales ~0.1 pc,

CO 2-1, 3-2 Bipolar/Quadrupolar outflow at scales of 0.01 pc

SiO 8-7 & 870µm

H13CO+ 3-2 & 870µm

CO 3-2 & 870µm

ALMA Science Verification observations of IRAS 16293-2422 Same data but different interpretation!!!

(Loinard et al. 2013)

(Kristensen et al. 2013)

SMA (David) beats ALMA-Science Verification (Goliath) !! Why???

Open questions to be addressed in the next decade ! Connect the scales ! Statistics ! Dust properties !

What regulates the SFR ? Role of magnetic fields in filaments and cores ? Formation of disks: when and how in low-mass protostars ? Accretion onto the protostars: episodic, rates ?

Role of galactic flows and turbulence ? Are there any disks at all in massive protostellar cores ? Massive star formation: dynamic or monolithic ? Massive prestellar cores ?

(chemistry, ionization rates, etc ...)

SMA: sensitive to both small and large scales + polarization capacities !