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MEMORANDUM

April 26, 1989
To: SMA Distribution

From: Vivek and Colin
Subject: Design Study Memo #2: Array Configurations

This memo consists of the two reports produced by Vivek Dhawan on his study of
possible configurations for the array.
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Array Configurations and Imaging R ';

As summarized in NRAO Millimeter Array Memo No.47, (Hjellming and Hoyer),

The best configuration for uniform sampling of the U-V plane out to the configuration
"diameter” is a circle (ellipse for low-dec), with random antenna locations. Has excellent
snapshot coverage (see Cornwell, MMA memo No.38). Hereafter called the O array.

The best configuration for enhanced sensitivity at short spacings is a VL A-like Y array;
an alternative for denser packing of antennas is an array with 5 radial arms. Both O- and
Y-arrays have good imaging properties, the choice depending on the desired distribution
of sensitivity in U-V plane.

For the Submillimeter Array, the topology forces non-ideal arrays, [fig.1}, and there
will be about 6-8 antennas, to the 40 in the NRAO study. Do things change drastically
for small numbers of antennas? Not much.

Antenna locations have been tried out as follows:

1. Using Phil’s map of SAO site on Mauna Kea, [fig.1]. The longest baselines obtain-
able in the earmarked area are about 750m. The U-V coverage is lopsided, with most of
the tracks in just 2 diagonal quadrants, [fig.2a).

2. The longest baselines giving acceptable U-V, (mostly) within the SAO site are
about 280-300m, [fig.2b).

3. Y-like arrays, which are not confined to the SAO site. I have tried to fit the
topology, but some sort of construction estimate is needed. Two locations for Y’s are
possible, [fig.1], each with about 650-700m baselines. Comments?

Qualitatively, O’s do have good snapshot coverage, and uniform U-V sampling; Y’s
give more short spacings, and slightly poorer snapshots. Y’s do better at imaging than
O’s, for reasons I do not fully understand; [see fig.8]. I have found two 6-element Y’s which
give roughly equivalent coverage, [fig.4], though they are not excellent at all declinations.



How many configurations do we need to span, say, a range of 100:1 in baseline lengths?
A 6-antenna O has a range of 3:1 (see memo 38) which can be pushed higher only at the
expense of some holes in U-V coverage. The 6-Y arrays mentioned above have ranges of
3.3 and 3.6. An 8-Y (lopsided) gives about 6:1, with good UV coverage, {figs. 5, 6].

Imaging simulations, [fig.3], show that a 1Jy source can be easily mapped with about
10:1 dynamic range with a 7-antenna O-configuration.

Simulations with the 6-Y array were done with a fairly complex source of 10Jy with
both compact and extended structure, [fig.7]. The compact structure can be mapped, even
with completely random phases, in a 4-hour synthesis, [fig.8]. The extended structure
is hard to map with a single 6-array, but using an 8-antenna array improves matters
considerably, [fig.9].

Note: combining two 6-antenna configurations gives about as many baselines as a
single 8-array. Any comments on configuration turn-around time vs. cost of 2 extra
antennas?

Some questions:

. What should be the scaling factor between configurations? Should successive con-
figurations be disjoint? Do we want/need arrays that give the same resolution in different
frequency bands?

. To minimize shadowing in compact configurations, the O-array may be better than a
Y, because the O has no redundant directions. The Y’s seem to be better at imaging with a
small number of antennas, [fig.8], and would require the least road/track for configuration
changes. Comments?
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Figure 1. Map of Mauna Kea showing the present SAO site. Two possible ranges for
locating Y-arrays are also shown, lying mostly outside the site.
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Figure 2.A. & B. 7-antenna arrays loosely based on the O-array (i.e., antennas randomly
spaced around allowed perimeter, elongated N-S for good coverage at low declinations).
The shorter spacings can be improved by relocating antennas, but the longest spacings are
not going to get better. (Dec. =+20, -30 respectively; full tracks with elevation limits of
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Figure 3. Image of a fake 1Jy source (A) with the array of (2.B), roughly a 4-hour
synthesis.

Thermal noise was simulated in the visibilities assuming Tsys=500K and aperture eff.=0.60
The data was uncorrupted by pointing errors and phase fluctuations. Even so, CLEANING
proved difficult. The MEM solution (B) recovers the position angle of the original, but
misses the blob at 15% of peak, and some of the extended structure. Residual sidelobes
are at 2-4%.
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Figure 4. UV tracks from 6-element arrays, unconstrained by topology. Dec=-30; full
tracks.

(A), (B): Y-arrays with symmetric arms, and normalized antenna locations along an arm
at (0.278, 1.00 for A) and (0.476, 1.00 for B).

UV coverage is somewhat more centrally condensed in the two Y’s, compared to (C): O-
array from Cornwell, [NRAO Millimeter Array Memo 38].

The ratio of largest to smallest baseline in a snapshot is about 3.6, 3.3, and 3.0 for (A),
(B), and (C).

Images produced by these arrays are shown in Figure 8.
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Figure 5. Full UV tracks at dec.=-30 for Y-arrays with 3 antennas per arm, located at
0.168, 0.529, 1.00 for (A) and at 0.304, 0.605, 1.00 for (B).

The program YBASE computes baseline lengths, given antenna locations along an arm.
A few trials yielded the two arrays shown above, which have baseline lengths distributed
as far as possible in geometric progression. The UV coverage is quite good, but breaking
the high symmetry of the identical-armed Y must give lower sidelobes. Any comments on
whether this is desirable, how much it would affect the construction, etc?

For Ng baselines, one can expect, at best, the UV points in a snapshot to be spread evenly
OvVer an area Ngz on a side. That is, a range of baseline lengths of 6:1 for a 9-element

array. Actual values are 5.9 and 5.7 for (A) and (B).
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C get
8

PROGRAX ybase
CALCULATES BASELINE LENGTES OF Y-ARRAY WITH S-ANTS PER ARM

REAL BASB(S), RBASE(S), BLR(S)

PARANETER (INC=8) { terminal ipput unit
PARAXETER (OUTC~8) | terainal output unit
input paraseters of Y:

YRITE (OUTC,°'(A)’') ‘S input & and b for Y array: '
READ (INC,800) A.B

C compute baselines

BASE(1) = BQRT(3.0)

BABE(2) = BASE(1)°A

BABE(3) = B-A

BASRE(4) = BQRT(1.0 + A + A®A)
BABE(S) = BQRT(1.0 + B + B*B)
BASE(S) - A-1.0

BASE(7) = B-1.0

BASE(B) = BQRT(A®A +B*B +A*3)
BASE(9) = BASE(1)°B

C Noraalize to longest bassline

108

DO 198 I-1,9
RBASX(I) = (BABE(I)) / (BASX(S))
CoNTINUE

C sort norsalized array iz asoending order.

il

110
112

c

DO 113 J-3.,9
8<RBASK(J)
DO 111 K=J-1,1,-1
IF(RBASE(X).LE.B)GO 70 110
RBASE(E+1) = RBASE(X)
COFTINUE
K=0

RBASE(L+1)=6
CONTINUE

compute ratio of sucoessive baselines.

119

c
c

c

BLR(1) «1.0
DO 119 L=3,9

BLR(L) ~ (RBASE(L)) / (RBABE(1-1))
conTINTR

“idesl"’ ratio of deselines is 6.0°°0.138
‘available ratio is (max/min)**0.128

RID = 6.0 **Q.1a8
RAV = ( 1.0 /7 RBABR(1))**0.138

Oompute sum of squares of deviations from RID and RAV

139

8ID - 0.0

8AV =« 0.0

DO 189 L=-8,9
8ID = 8ID + (BILR(L)-RID)**g
BAV = BAV + (BLR(L)-RAV)**g

CONTINUR
C write output file.
ERADER

1 = ‘BASELINES POR Y-ARRAY VITE ANTENNAS AT 1. A, AND B’
ERADERZ = ‘BASELINES SORTRD & WORMLIZD IRCRENENT RATIO’
OPEX (UXIT=1R,8TATUS~ NEV’ XANE-'yurray.dat’,DIBPOSR='KEEP’ )
WVRITE (12,601) NBADERR]

WRITE (13,601) SRADERS

VRITE (6,601) ERADER}

VRITE (6,601) ERADER2

DO 199 I-1,90

WRITE (6.600) BASE(I), RBASE(Y), BLR(I)
WVRITE (13,800) BASE(I), RBABR(I), BLR(I)

199
VRITE(13,608) A, B, SID, RID, SAV, RAV
VRITZ(S,803)A, 3, BID, RID, SAV, RAV

caa CLOSX (UNIT=18)
g-n“ﬁwﬂwm

800 PORMAT (P8.8,1X,.78.8)

600 PORMAT ( B(BX, G10.4))

601 FORMAT (BX, AB0)

603 FORMAT(SX, ‘A=*,P6.3,8X, ‘B-',P8.8, 5%, ‘8ID~',78.4,5X,

*

=0 ‘RID=',78.4,8X, ‘8AV=*,P8.3, BX, ‘RAV=".768.8)

P.5.
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Useful coverage is obtained down to dec=-45, and more if a N-S stretched array is used.
(I have not yet looked at this.)
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Figure 8: Fig.7 viewed by arrays in fig.4.

(A): Thermal noise and no phase fluctuations. (B): Thermal noise plus station-based phase
errors uniformly distributed over 2x and uncorrelated in time. Comparing these images

with the original shows the lack of short baselines.

(C) and (D): fig.7 viewed by 6-O array of fig.4c.; without and with phase fluctuations.
Even fewer short baselines result in poor recovery of extended structure.

Roughly speaking, the left images test UV coverage, the right ones test self-calibration

with the same array.
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Array Configurations and Imaging, II

Many aspects of the array design are interdependent, and much remains to be deter-
mined. I hope that this study answers some questions, and serves as the starting point
for further discussion. Here is an index of the questions addressed so far, with summary
answers. For more details, see the pages indicated in brackets.

1. Questions, and some answers.

a. What are the maximum baselines available on Mauna Kea, and what are the
attendant compromises? [p.4, 7]

Max Baseline: 1.7 - 1.9 Km; Max height differential of 300 across array; worst elevation
blockage for any antenna in any direction : 15 degrees. See Section 2 for more.

b. Comparison of different (ideal) array geometries.
Y-arrays with different constraints, [p.8] O-arrays, [p.9)

Many different Y-arrays are possible, giving equally good UV coverage. I tried several
layouts, with antennas arrayed according to:

(i) a power law; (ii) in geometric progression; and (iii) "hand crafted” arrays, with 3
identical arms, but locations along an arm adjusted to give uniform UV coverage.

Option (ii) can give arrays not noticably worse than the others, with the advantage of
being self-similar, i.e., needing fewer setdown positions for configuration (scale) changes.

Y’s have more short spacings than O’s with the same no. of antennas and same max
baseline; i.e., Y’s span a larger range of baseline lengths, and so do better at imaging
sources containing structure on a wide variety of scales. The two types seem to do equally
well at self-cal. A Y array requires less road than the comparable O-array.



c. Effect of distorting ideal an:ays to conform to the site.

Distortions are not necessarily bad. E.g. NS elongation helps at low declination; Y-like
arrays with unequal angles or arms can have lower sidelobes than the undistorted array,
which has higher symmetry. See section 3 on how to check the UV coverage or imaging
for the specific array. See sec. 2 for UV coverage of the recommended array.

d. Effect of rotating the array [p.12]

For an O-array, rotation does not affect the UV coverage much. Rotating a Y makes little
difference at high declination. At low declination, avoid lining up an arm with either X or
Y axis (within about 10 deg.)

e. Effect of limiting Zenith angle. [p.13]

Airmass < 2 or Z < 60° will restrict synthesis maps longer than 3 hours to the declination
range of -20 to +75 (for Mauna Kea, lat=19deg).

A 3-armed Y requires 4 hours for tracks from the different arms to overlap; falling short
of this takes wedges out of the UV coverage, making hexagonal sidelobes in the beam.

f. UV coverage as a function of declination. [p.9,10 of previous memo]

g. How many antennas are needed for good imaging in one day? [Memo I, p.11,12;
Memo 11, p.10]

Six antennas are sufficient for gelf-cal on simple sources; 9 recommended.

h. How many configurations are required? [I, p.7; II, p. 10,11]
To span a 300:1 range of baselines, from 6m to about 1800m, requires :

5 or 6 configurations, (with 6 antennas, which give a range of about 3-4 per configuration,
and successive baseline lengths within a single configuration spaced by a ratio of about
1.5)

3 or 4 configurations, (with 9 ants/config, range of 6-7, spacing of 1.3)

2 or 3 configs, (with 12 a/c, range of 12-14, spacing under 1.2)

2



i. Arrays allowing scaling (sizé change) and expansion (more antennas).

The recommended siting plan, [p. 4, 14}, gives Y arrays with 6, 9 or 12 elements, which
can be scaled in steps of 2.

J. How well does self-cal (phase recovery) work on weak sources? [p. 20]

On barely and heavily resolved sources alike, sources with peak flux per beam as little
as 5-6 times the theoretical noise level could be mapped with completely random phases.
(For the simulations, I assumed Tsys = 180K, nine 6m dishes with 60% efficiency, and a

four hour synthesis, resulting in a noise level of 0.85 mJy)
loos 38t jmteq. Fimi)

Also see item (k) below.

k. Comparison of deconvolution algorithms (Clean and Max Entropy).

The procedures are:

(i) UVMAP and APCLN ( in AIPS). This requires 1 iteration only, if the phases are
stable, and takes about 1.5hr for a 256 x 256 map. 3 or more iterations, each preceded by
VSCAL, are required for mapping with completely scrambled phases.

(ii). VLBMEM (CalTech VLBI package) requires under 0.5hr with stable phases, 1hr with
scrambled phases, for the same 256x 256 map.

With either algorithm, spurious features of maps with bad phases weré typically no more
than a factor of 2 worse than the same map made with stable phases.

Puzzle: The spurious features on MEM maps look like remnants of the dirty beam; how-
ever, they are well below the e?:pected noise.

1. Effect of including other antennas, e.g. CSO, JCMT.

For comparable dish efficiencies, adding CSO and JCMT doubles the collecting area of 9
six-meter dishes. For the site chosen, the additional baselines lie mostly in the NE/SW
quadrants, and contribute mostly to the medium and short spacings (in the largest array.)

m. Unexplored questions

- Totally asymmetric arrays, (i.e., three different arms, at random angles) might give lower
sidelobes, but have not been explored. May be forced by site topology.

3



— Other sites.

— Focal plane arrays could (i): be used to get multiple beams, hence larger total field of
view from large antennas; (ii):compensate for main dish surface errors, if cross-products
between focal-plane elements are formed. (See paper by Cornwell and Napier). Both these
effects would increase the optimum dish size, at the expense of silicon and software to
handle multibeams and mosaicing. I think this needs to be carefully looked at.

— Are different sized antennas desirable?

-~ Mapping large/multiple fields : effects of amplitude calibration and pointing errors on
combining data from different arrays?

-7

2. Recommended site and configuration.

a. Configuration

The recommended configuration is one with antennas in geometric progression along each
arm, with a ratio of 2.06;

This has the advantage [see UV plots etc in Fig.7] of allowing good imaging with either 6,9
or 12 antennas. Just 8 antenna stations along an arm, located at 6.2, 12.8, 26.3, 54.2, ...... ,
976.0m, would give a range of baselines extending from the single dish diameter, (6m),
out to 1700m. Configuration changes involving scaling by (2.06)™ would require moving n
antennas per arm.

b. Site

The logistics, site 'seeing’ quality, etc. still remain to be compared to other possibilities,
to see if a better tradeoff is possible. Such questions aside, the advantages of the site
suggested in Fig.' are:

(i) The array lies partly within the earmarked *SAO area”, and gives long baselines with
minimal additional acquisition of land.

(ii) The center of the array is on fairly flat ground within the SAO area, which is good for
compact arrays, operations buildings, etc.



(iii) The array is not too far away from other large single-dish sub-mm telescopes.

3. Simulation procedures : How to make and test a new array.

a. To make a new array, with arbitrary antenna locations, type in x, y, and z coordinates
into the file SMMXY.DAT (or a copy thereof, containing the same header). The units for
X-y are cm on map, with a default scale of 1cm="75meters. The units for altitude are feet,
read off a contour map (if required). North and West are positive, with the grid origin
at the CSO, whose coordinates were assumed to be : 19.82667 N, 155.47167 W (degrees),
ALT 4072m. -

Run XLAT to convert x - y - z (cm - cm - feet) to and from lat - longit - z (deg - deg -
meters). The direction of conversion is automatically determined by reading the header
record in the input file, which must correspond exactly to the format of the *.DAT files in
my area chimp:[vivek.submm-array] .

To change scale, or rotate the basic array, use the options in XLAT. A scale factor of 1.00
gives 1cm=75m; scale factor of 3.20 gives lcm=240m. (These are the two maps I had).

Include the output file from XLAT in the file SMMSTAT.DAT, which is the master file of
station locations. Make sure the formats match, and remove all header or comment lines
from this file.

XLAT also automatically gene;‘ates a data file called GENPLOT.DAT, for plotting out the
antenna locations. See the command file GENPLOT.COM

b. To make a Y-array with N antennas per arm, having relative locations at x1=1.00,

' x2, x3, ..., xN : edit the file YMAKE.COM and run it. The rotation parameter accepts

upto 4 numbers, and works as follows: The first number is the angle through which to

rotate the entire array (CCW from N). The next three numbers independently specify the
rotation of the three arms, to make an asymmmetric Y.

E.g.: specifying 10.0 -10.0 -40.0 +20.0 makes an inverted T.

[Note: A rotation, for symmetric Y array, of 10-20degrees off from N, gives better UV
coverage, compared to rotations of n*30 degrees,[n =0,1,2 ... ]

To compute the baseline lengths for a given set of antenna locations, run YBASE.

5



Include the output file from YMAKE in the file SMMSTAT.DAT, which is the master file
of station locations. Make sure the formats match, and remove all header or comment

lines from this file.

c. To generate fake UV data with a trial array: Edit the command file FAKE.COM
to put in station names, antenna diameters and efficiencies, system temperatures, model
source, RA & DEC, observing time, etc. for a hypothetical experiment. The output is in

CalTech MERGE format. - _(name- MoP)

To make a fake source, modify an existing one or see CalTech programs MODSUM, MOD-
FIX, and MODELFIT.

d. To view UV tracks from a MERGE dataset: Run TEKUV.COM from a tektronix
window, or QUV.COM for QMS printer output. Else, to plot out UV tracks without saving
the fake visibilities, set the ‘plotting switches and disable the data switches in FAKE.COM

e. To produce a maximum entropy image: from MERGE data with 10 or fewer sta-
tions, run VLBMEM.COM; To view the map, edit and run MAPPLOT.COM from a TEK
terminal. For over 10 stations, convert to FITS and run VM.

f. To make a hybrid map from MERGE data: edit and run HYBRID.COM
g. For help on all the CalTech VLBI programs: type VH.

" h. To go AIPS, convert MERGE data to FITS by editing and running the file MERGE-
FITS.COM .
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Figure 2. Four different 9-element Y arrays are shown, observing a source at dec=-30.

(a) Antennas along an arm in geometric progression, g™ with ratio g = 1.75, i.e., locations
at 0.326, 0.571, 1.0

(b) power-law nP with index p = 1.58, locations at 0.176, 0.334, 1.0
(c) With g = 1.53, locations at 0.427, 0.654, 1.0
(d) 'Random’, with locations at 0.217, 0.415, 1.0 P’% .
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Other arrays with random locations were shown in figure 1.5 [see previous report|. These
arrays have similar ranges of baseline lengths, the principal differences being that the

shortest baselines arise from various combinations of radijal and circumferencial directions.
’C’ clearly has worse U-V holes than the others.

(e) 9-element O array from Cornwell’s memo. Note the uniform coverage at long baselines

and the consequent lack of shorter spacings, compared to (2)-(d). See also figures 1.8 and
.3
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of figure I1.2(d), stable phases; (d) Y-array, scrambled phases. See also figure 1.8, and
comments therein.
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Compare with the final recommended array in figure I1.7(d),
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and no worse than any of these,

P.11

Figure 4. 12-element Y arrays, antennas at : (a) random: 0.156, 0.320, 0.532, 1.0
(b) random: 0.169, 0.315, 0.788, 1.0 |
(c) in geometric progression, g=1.32, locations at 0.329, 0.574, 0.758, 1.0

which is scalable, expandable,
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Figure 5. U-V coverage of the array of figure I1.2(d), with the 'North’ arm rotated CCW
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The higher symmetry of (a) and (d) shows up as coinciding baselines,

holes along the V-axis, compared to (b) and (c).

(All arrays before this figure were shown at a rotation of 10 deg.)
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Figure 8. (a) Colin’s data & model of L1551 at 2.7mm; based on this, I faked a source
with a 0.6” ’point’ of 0.7Jy at 220GHz, embedded in a 1.1Jy "halo’ having an approximate
1/r radial dependence out to 15”.

(b) and (c): Synthesized beam for the array of figure I1.2(a) at 220GHz, for dec=-30.

(d) and (e): Fake L1551 at two scales. Contours are logarithmic, 0.2, 0.4, ... 25, 50, 90 %.
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Figure 9. MEM images of "L1551", total flux 1.8Jy at 220GHz, viewed with Y-0 array
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(c) Central region of (a).

(b), (d) Scrambled phases.
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Figure 10. MEM maps of "L1551", same conditions as figure H.O, except 2.5 times lower
resolution, with the 0.6 component barely resolved. "

(a) and (c): Stable phases;

(b) and (d): Scrambled phases.
Theself-cal’dlmagesonthenghtuetruetothoseontheleﬁ down to the 0.5 % level on
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Figure 11. CLEAN maps of the same data sets as in the previous figure I1.10; residuals

are at roughly the expected level. As before, maps at left are from data with stable phases,
those on right are from data with scrambled phases.

The one-sided structure of fake source is retrieved down to the 2% level (total flux of
1.8Jy), despite having a beam that is extended along the same direction. MEM/Self-cal -

thus works very well with 9 antennas on a simple source of this strength. [See the followiné
figure for a test on weaker sources. |
P.\9



Figure 12. To see how selfcal works on weak sources, the following test was done:

From the fake source was generated a sequence of sources, each a factor 2 weaker than the
previous one, but otherwise identical. Data sets were generated for the sequence, all with
scrambled phases. A sequence of maps was made, that followed the descent of the source
into the noise. The entire operation was repeated at another resolution . The weakest
source in each sequence is shown:

(2) and (c), for the heavily resolved configuration;

(b) and (d), barely resolved. The fluxes/pixel on the final maps are 4-6 times the "noise”,
defined as follows:

T;YS = bo° )
— " Nt .S, 5357 °% :(éa
/gz Zd‘dmt— 6”, S

g

z ot He Nan*' =9
T= 4‘\5. aw “‘5.:’[0001

(%
I suggest (for your ernest consideration) that a study of coherence effects could proceed as
follows, at great expense of CPU time:

(2) Generate a sequence of weakening sources, all with the same (coherent) integration
time, say 300sec.

(b) INcoherently average each data set to 1000sec per data point.

(c) Map the sequence, note the flux/pixel (or flux/beam) where the source is last mapable.
'(d) Repeat for the same coherent integ time, but at a different resolution.

() Repeat steps (a) thru (d) for 100sec, 30sec, 10sec.

(f) Plot and savour the results: "coherence” time vs. minimum self-cal’able flux/beam.

(f) If ambition persists, repeat entire exercise with a really complex source, and hope that
the plot in (f) is a general result.
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