The Physics of the Interstellar Medium

Summary: This course is intended to give its students a broad knowledge of how the various constituents of the Interstellar Medium (ISM) interact physically with each other. A detailed outline of the topics to be discussed is provided beginning on the next page. The course will have bi-weekly meetings, and will rely on student preparation and participation.

Prerequisites: Familiarity with Radiative Transfer; good knowledge of Quantum Mechanics; familiarity with Basic Astronomy.

Readings: Sections of texts will be assigned with each Problem Set and will be on reserve in Wolbach Library. In addition, seminal and/or recent relevant journal articles will be assigned, and will be used in class as a launching point for discussion.

Course Meetings: Two 1.5-hour meetings per week. Students should read the assigned journal articles & review the relevant text sections as the course progresses. Much of the "lecture" time will be spent in discussion. Normally, Tuesday meetings will be "lecture"-style, Thursdays will be half lecture, half discussion. The discussions will focus on one relevant research article, and will be led by a different student each week. Lecture notes will be posted to the course Web site after each class.

Guest Lectures: Approximately four times during the term, ISM experts from the CfA will give a guest lecture on their specialty. These lectures will cover material already listed in the syllabus below.

Problem Sets: Approximately every two weeks. Problems will cover the "basics," along with more in-depth questions which will often require some research in the literature. Several of the problems will be based on the journal articles which form part of the assigned readings.

Exams: The course will have a take-home final exam, and no in-class exams.

Grading: 40% final exam; 35% problem sets; 25% Journal presentation

Course Web Site: http://cfa-www.harvard.edu/~agoodman/astro208.html Links to problem sets, reading assignments, WWW links relevant to the course, and some lecture notes will be posted here.

Instructor: Alyssa Goodman, office hours by appointment. Room M-330 at the 160 Concord Avenue building of the Center for Astrophysics, 495-9278, agoodman@cfa.harvard.edu.

Teaching Fellow: Adam Trotter, office hours by appointment. Room M-341 at the 160 Concord Avenue building of the Center for Astrophysics, 496-7743 atrotter@cfa.harvard.edu.

The Physics of the Interstellar Medium

1. Introduction: Defining Features of "A" GALACTIC ISM

- 1.1. EARLIEST OBSERVATIONS
- 1.2. THE "MODERN" VIEW & HOW WE GOT IT
 - a. Composition
 - Gas, Dust, Electrons, Cosmic Rays, Photons
 - b. Extent
 - Scale Height & Radial Distribution
 - Interstellar "Clouds"
 - Extragalactic Perspective
 - Comparison with Stellar Distribution
 - c. Temperature Structure
 - The "Hot," "Cold," and "Warm" ISM
 - d. Ionization State
 - Interactions with of ISM & Stars
 example: Strömgren Sphere Analysis
 - Influence of Cosmic Rays
 - e. Density Structure
 - Measures of Column Density and Volume Density
 - Hierarchy of Interstellar "Clouds"
 - f. Velocity Structure
 - Galactic Scales
 - Within Individual "Clouds"
 - g. Magnetic Field Structure
 - Flux-freezing & Ambipolar Diffusion
 - Measurement Techniques
 - Confinement of Cosmic Rays & "Support" of Clouds
 - h. Time Scales & Stability
 - Virial Equilibrium
 - Instabilities (e.g. Jeans)
- 1.3. NATURE OF THE ISM: ABOVE "VARIABLES" INSEPARABLE

2. KINETIC EQUILIBRIUM & RADIATIVE PROCESSES: OVERVIEW

- 2.1. THERMODYNAMIC EQUILIBRIUM
 - a. Partition Function
 - Kinetic, Excitation, Color, Antenna, Bolometric, and Other "Temperatures"
 - b. Non-equilibrium Distributions
- 2.2. EXCITATION PROCESSES
 - a. Collisional
 - b. Recombination
 - c. Non-LTE (Pumping)

2.3. RADIATIVE PROCESSES

- a. Radiative Transfer Definitions
- b. Emission & Absorption Coefficients
- c. Continuum Emission
 - Thermal
 - Bremsstrahlung & Synchrotron
- d. Scattering Processes
- e. The Influence of Shocks
 - In SNe, Star-forming Regions, and in Accretion Disks (more below)
- f. What combination of the above will be observed where?
 - Depends on l.o.s. Temperature, Density, Abundance, and Velocity Distribution

2.4. TRACING DENSITY

- a. Forbidden Lines
- b. "Critical Density" Analysis

3. THE ISM OF THE MILKY WAY

3.1. THE MULTI-PHASE PARADIGM

- a. Basic Assumptions
- b. Pressure, Mass, and Energy Balance
- c. Time Dependence

3.2. THE "COLD" ISM

- a. Atomic Gas (H I)
 - Origin of the 21-cm Line: Flipping a Spin
 - line Surveys
 - High-Velocity and High-Latitude Clouds
 - . Detection
 - . Origin & Evolution

b. Molecular Gas

- The Difficulty in Directly Observing H₂
- Role of "Trace" Species
 - . Molecular Line Mapping
 - . Masers (more in AGN discussion)

3.3. DUST

- a. What is dust?
 - Cause of interstellar extinction
 - Range of Sizes from "Big Molecules" to Planetesimals

b. Measured/Measurable Properties

- Optical Efficiency Factors
 - . Cross-sections for emission, absorption & scattering
 - Albedo
- Extinction as a function of λ
 - . Total-to-Selective Extinction
 - . Spectral "features"
- Thermal Emission as a function of λ

- . Is the blackbody approximation adequate?
- . Are grains fractal?
- Polarization as a function of λ
 - . Polarization due to Scattering
 - . Polarization due to Aligned Grains
- c. Using Polarization to Map B
 - Polarization of Background Starlight
 - Polarization of Thermal Emission

3.4. MOLECULES & DUST TOGETHER

- a. Formation of Molecules
 - on Dust
 - in the Gas Phase
- b. Destruction of Molecules
 - by cosmic rays
 - by photons
 - by electrons & collisions

3.5. HEATING & COOLING

- a. Atomic & Molecular Coolants
- b. Dust Heating & Cooling
- 3.6. THE "HOT" ISM
 - a. The Warm Neutral Medium: Broad H I lines
 - b. The Warm Ionized Medium: Absorption Line Observations
 - c. Radio Continuum Emission & Pulsars as Probes
 - Distinguishing Bremsstrahlung from Synchrotron from Thermal Emission
 - Polarization of Synchrotron Emission
 - Rotation and Dispersion Measure
 - . Faraday Rotation
 - . RM/DM of Pulsars as a Probe of B

3.7. X-RAYS AS A "PROBE" OF THE ISM

- a. X-ray "Shadows" of Molecular Clouds
- b. Calibration of the CO/H₂ ratio (a.k.a. the "X-factor")
- 3.8. How Appropriate are Multi-Phase Models?

4. Interaction of Photons with the ISM

4.1. H II REGIONS & PHOTON-DOMINATED REGIONS

- a. Strömgren Spheres
- b. "Clumpy" H II Regions
- c. Radio Recombination Lines
- d. General Shock Physics (Basic Equations, More Later)
- e. Compact and Ultra-Compact H II Regions
 - Cometary H II Regions & Bow shock models

4.2. CHAMPAGNE-FLOW MODELS

4.3. IONIZATION FRACTION & CHEMICAL BALANCE IN PDRS

- a. Measurements & Theories
- b. Effects on Ion-Neutral Coupling
- 4.4. THE EFFECT OF HIGH-ENERGY PHOTONS ON MOLECULAR CLOUDS (E.G. IN AGNE)

5. STAR FORMATION IN MOLECULAR CLOUDS

- 5.1. GIANT MOLECULAR CLOUDS, DARK CLOUDS, CLOUD CORES
- 5.2. CLOUD SUPPORT & DYNAMICS
 - a. "Larson's Laws" & Virial Equilibrium
 - Role of Magnetic Fields (Part I)
 - b. Pressure Confinement
 - c. Self-similar Structure
 - d. Rotation
- 5.3. THE ROLE OF MAGNETIC FIELDS IN STAR-FORMING REGIONS (PART II)
 - a. What matters: Static Fields, Turbulence and/or Waves?
 - b. Measurements of Field Strength
 - Zeeman Observations
 - c. Measurements of Field Structure
 - Polarization due to Aligned Grains
 - d. MHD Simulations

5.4. JETS & OUTFLOWS

- a. Observed Properties of Outflows (on ~pc scales)
 - Comparison of Outflow Mechanical Luminosity & Protostar's Luminosity
 - Aspect Ratio
 - "Hubble Flow"
- b. Observed Properties of Jets (on ~0.1 pc scales)
 - Emission from Herbig-Haro Objects and "Shocked" H2
 - . Continuum and Line Radiation Produced in Shocks
 - . Temperature, Ionization & Velocity Structure of Jets
- c. Energy dissipated: Part I
- d. Collimation Mechanism
 - The "X-celerator Model"
 - Other proposals
- e. Jet-driven Outflows
 - (M)HD Simulations of Jets & Outflows
 - . Structure in the Momentum-Conserving Case
- f. Origin of the Relevant B-field: Stellar or Interstellar?
 - FU Orionis Activity & Episodic Jets: Magnetic Variability?

5.5. DISKS

- a. Radiated Spectrum & Dependence on Viewing Angle
 - The Role of Scattered Light

- b. Fragmentation & Instabilities
- c. Planet Formation

5.6. What Determines the Initial Mass Function of Stars?

- a. Agglomeration Theories
- b. Fragmentation Scenarios
- c. "Fractal" Scenarios & Speculation

6. Interaction of Stellar Winds with the ISM

- 6.1. WINDS FROM YOUNG STARS
 - a. Energetics: Part II
 - b. Chemical Effects
- 6.2. WINDS FROM MAIN SEQUENCE & EVOLVED STARS
 - a. Production of Dust
 - Variety
 - Subsequent Processing to Produce Observed I-S Dust
- 6.3. PLANETARY NEBULAE
- 6.4. SUPERNOVA REMNANTS
 - a. Observations
 - Multi-Wavelength Radiation
 - Optical Line & Continuum Emission
 - . Synchrotron Radiation
 - b. Shock Physics & Chemistry
 - Time Evolution: Phases in the Expansion
 - c. Energy Deposited into ISM
 - d. Simulations

7. THE ISM IN EXTERNAL GALAXIES AT Z~0

- 7.1. STRUCTURAL VARIATIONS
 - a. Density Structure
 - b. Velocity Structure & Rotation Curves
 - c. Magnetic Field Structure
- 7.2. METALLICITY VARIATIONS
- 7.3. MASER OBSERVATIONS OF AGNE

8. THE INTERGALACTIC MEDIUM

- 8.1. OBSERVATIONS: PRESENT & FUTURE
 - a. Gas
 - b. Dust
 - c. Magnetic Fields

8.2. RELATIONSHIP OF THE ISM & IGM

- a. Coronal Gas?
- b. Intracluster Gas in Galaxy Clusters

9. THE "ISM" AT Z>>0

- 9.1. Possible Observations
 - a. HI
 - b. CO
 - c. Future Prospects
- 9.2. COSMOLOGICAL PREDICTIONS
 - a. Lower Metallicity?
 - b. Origin of the Intergalactic & Interstellar Magnetic Fields
 - c. Observational Feasibility Estimates
- 9.3. POLARIZATION OF THE MICROWAVE BACKGROUND

Notes:

- •Specific "historical" lectures are not included in this outline. Instead, I will incorporate an historical perspective into topical lectures, whenever it is appropriate. For example, in presenting what appear to be "simple models" like the Strömgren sphere or Jeans collapse, I will discuss the observations Strömgren or Jeans would have had available at the time they made their models.
- •Similarly, specific "observational technique" lectures are not included. Techniques will be discussed in context.