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ABSTRACT

Time-Distance helioseismology holds the most promis-
ing potential for high resolution three dimensional to-
mography of active regions. Namely by analyzing
the time propagation anomalies resulting from acoustic
waves propagating through and interacting with an ac-
tive region, we should be able to derive enough diagnos-
tic information to map the flows and any sound speed
anisotropies below the region surface as such a region
develops and evolves, and maybe eventually predict its
emergence. Initial inferences from time anomalies com-
puted over and around active regions have shown tanta-
lizing results, but guarded scepticism ought to be held as
the formalism of the methodology is still being developed
and the nature of the interactions in the magnetized region
– especially near the surface – are poorly understood and
thus not yet modeled.

I present here the results of a conceptually simple test
to validate the putative fast sound speed plume derived
below the well-studied active region of June 1998. The
idea is to remove from the input set used in the inversion
some of the time anomalies computed using observations
taken at the surface inside the active regions, measure-
ments that might have been affected by interactions not
modeled in the kernels used in the inversion. To vali-
date this test, I first computed simulated data sets based
on a similar sound speed perturbation plume and result-
ing from a direct forward computation. The acoustic ray
approximation was used to derive the sensitivity kernels.

I compare how well the underlying sound speed profile is
recovered or not in these simulations as observables are
removed over circular patches of various sizes centered
on the active region (hence the so called “cookie cutter”
test). I then present how the inversion behaves when the
same test is applied to actual data. Two distinct inversion
techniques were used, including one that allows me to
compute the corresponding resolution kernels.

The validity of the inferences are discussed in light of the
results of these simulations as well as the resulting profile
of the corresponding resolution kernels.
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1. INTRODUCTION

Tantalizing results suggesting the presence a fast sound
speed “plume” below an isolated sunspot have been
derived by Kosovichevet al. [1]. This sound speed
anisotropy below an active region was inferred from
time-distance time propagation anomalies computed us-
ing MDI high resolution observations taken on June 18th
1998, while a well isolated circular sunspot crossed the
high resolution field of view of the instrument.

While if real such result is quite exciting and would chal-
lenge any model of an active region, one ought to exert
some guarded scepticism on these initial inferences. The
formalism of time-distance inversion is still being devel-
oped, especially in active regions. Let us keep in mind
that the nature of the interactions in the magnetized re-
gion – especially near the surface – is poorly understood
and thus not yet modeled.

One is led to wonder whether such inference is real and
one is thus motivated to develop a validation test. The
validation test I propose here is to remove from the in-
put set used in the inversion some of the time anomalies
computed using observations taken at the surface inside
the active regions, measurements that might have been
affected by interactions not modeled in the kernels used
in the inversion. In practice a small set of observables are
removed over circular patches of various sizes centered
on the active region – hence the so called “cookie cutter”
test – prior to carrying out the inversion.

2. THE HYPOTHESIS & METHODOLOGY

The hypothesis I wanted to test is whether the inferred
sound speed anisotropy could result from some sort of
surface contamination of the measurements of the time
anomalies over the active region.

The methodology to test this hypothesis I used is based
on the following argument: one should get similar re-
sults by dropping the potentially suspicious measured
time anomalies.

I carried out inversions using the complete data set and



four separate cutout sets, each with an increasing radius
for the cutout area (all centered over the active region).

I also generated simulated data to test the methodology: a
forward computation using the same kernels as for the in-
version was carried out. I then applied the same method-
ology on the simulations and the actual data.

3. THE INVERSION METHODS

I used two inversion methods to be sure that the result
of such a validation test is not affected by some behav-
ior specific to an inversion method. A robust result will
emerge if one sees the same trends when using either
method.

The first method is well known, efficient, and used by nu-
merous investigators. The other method is less efficient
but allows the computation of the resolution kernels. For
both methods and all cases, I used simple sensitivity ker-
nels based on acoustic ray propagation theory.

3.1. Method 1: Iterative Least-Squares (LSQR)

The so-known LSQR method is an iterative conjugate
gradient least-squares method [2]. The method is fast and
easy to implement, but due to its iterative nature there is
no explicit solution, hence one cannot, in practice, derive
the corresponding resolution kernels.

Therefore the appropriateness of the choice of the trade-
off coefficient for this method – a trade-off between res-
olution and error magnification – cannot be objectively
validated by the corresponding resolution kernels.

3.2. Method 2: Truncated Single-Value Decomposi-
tion (TSVD)

The TSVD is a slower method, based as its name sug-
gests on a single-value decomposition (SVD). Fortu-
nately, the basic sensitivity matrix for the time-distance
inverse problem is very sparse so implementing in this
context an SVD remains manageable. To increase effi-
ciency the method can be, and has been, parallelized.

The main advantage of the TSVD method is that there
is an explicit solution, hence one can compute the cor-
responding resolution kernels and use them to validate
objectively the choice of the trade-off coefficient.

3.2.1. Details of the TSVD method

The least-squares normal equations of any inverse prob-
lem are:

AT y = ATA x (1)

[m× n][n] = [m× n][n×m][m]
[m] = [m×m][m]

that can be rewritten as:

b = Mx (2)

wherey represents the observables (the time anomalies),
x the underlying model (the sound speed anisotropy), and
A the sensitivity matrix. HenceM is a square matrix
(M = ATA), whoseformalsolution is given by:

x = M−1b (3)

but in practiceM is near-singular and has no numerically
stable inverse.

Any matrix can be factorized using a single-value decom-
position (SVD), from which the formal inverse can be de-
rived. NamelyM can be rewritten as:

M = UΛV T (4)

and its formal inverse as:

M−1 = V (1/Λ)UT (5)

sinceUTU = 1 andV TV = 1.

The matrixΛ is a diagonal matrix (with diagonals ele-
mentsλi), and thus its inverse(1/Λ) is trivial (the diago-
nal matrix with elements1/λi), but is finite only if all the
single values are non-zero.

In most numerical implementations the matrixM will be
near-singular, resulting in some very small single values.
These will naturally contribute to a numerically unstable
inverse(1/Λ).

In the truncated single-value decomposition method, an
estimate of the solution is computed by truncating the
matrix (1/Λ), setting1/λi → 0 for λi < ελmax.

The choice ofε controls the amount of regularization,
hence it acts as the trade-off between resolution and error
magnification.

An estimate of the solution for a value ofε is thus given
by:

xε = M−1
ε b = M−1

ε AT y (6)

Standard error propagation gives us the uncertainty on the
inverse solution as:

σ2
x = |M−1

ε AT |2 σ2
y = |U (1/Λ) UTAT |2 σ2

y (7)

Of course, when the uncertainty of observables,σy, are
known, the problem is rescaled by dividing both the ob-
servablesy and the columns of the matrixA by the re-
spective uncertainties, and thus adequately weighting the
reliable information present in the observables.



The explicit formulation of the solution (Eq. 6) combined
with Eq. 1 lead to a straightforward expression for the
resolution kernels,R, since:

xε = M−1
ε AT y = M−1

ε AT A x
def= R x (8)

wherexε is the computed estimate of the solution while
x represents thereal underlying solution.

The resolution kernel,R, is thus “simply”:

R(~xTarget, ~x) = M−1
ε,TargetA

T A (9)

The resolution kernel indicates the effective spatial res-
olution and actual localization of the computed solution.
It is thekeyelement to judge objectively the estimate of
the solution resulting from the choice ofε. It not only
indicates the effective spatial resolution of the solution,
but whether the estimated solution is actually localized
at the target location and whether some of the “features”
present in the solution are real or due to non-local con-
taminations.

Note also that in practice, since(1/Λ) ends up being trun-
cated, I compute onlymeff < m single values and vec-
tors. Also, sinceA is sparse — whileM = ATA is not
— I use a sparse SVD solver and storeAT as a sparse
matrix.

In the absence of observable uncertainties the problem
is translation invariant and I can reduce the size of the
SVD and compute it only over an appropriate sub-space
in (x, y) of the volume analyzed.

The current implementation has also been parallelized,
using a parallelized sparse SVD algorithm to make use
of multiple CPUs execution speed up combined with an
evenly balanced storage distribution, as large problems
lead to very large memory requirements.

4. INPUT DATA SET

The data & simulations span17.4o or 209.5 Mm; the
cutout radii are:

R1 R2 R3 R4

radius [Mm] 6.96 13.92 20.88 27.84
fraction kept [%] 99.68 98.68 96.94 94.53

5. RESULTS FROM SIMULATIONS

I have computed solutions for two simulations for a set of
trade-off values and using both inversion methodologies.
The first simulation is a simple faster than its surrounding
plume (case #1) while the second one consists of a con-
trasted plume, with a slower than it surrounding volume

just below the surface and a faster than its surrounding
volume deeper in. The simulated topologies are shown
in the lower left panel of all figures showing inversion
results for the simulations.

Figure 3 shows inversion results for case #1 using the
LSQR method, while results for the same case but result-
ing from the TSVD inversion method are shown in Fig. 4.
Inversions for case #2 are shown in Fig. 5 and Fig. 6 for
the LSQR and TSVD methods respectively.

In all four figures one does see clear indication of the
presence of a localized sound anisotropy ineachpanel.
Namely for this range of trade-off parameters, for all four
cases of cutouts and for both methods, one recovers some
indication of the presence of a sound speed plume in the
simulation. The actual shape of the inferred plume and
the present or not of artifacts are modulated – as one
should expect – by the value of the trade-off coefficient
and the extent of the cutout.

6. RESULTS FROM ACTUAL DATA

The two inversion methods where applied to the actual
data for the same trade-off values and the same cutoff
radii as the simulations shown in the previous section.
The resulting inferences are shown in Figs. 7 and 8. In
these figures the lower left panels show inferred values
for the corresponding trade-off parameter without any
cutout.

We do recover the plume seen in [1], but notice how in
Figs. 7 and 8 the “plume-like” feature is seen only in the
lower left panels: for the cases that include all the data or
only small cutouts and for larger values ofε (i.e., cases
that include fewer eigenvalues and thus have a lower res-
olution).

7. RESOLUTION KERNELS

The TSVD method allows me to compute the correspond-
ing resolution kernels. Figure 9 shows the resulting reso-
lution kernels at four depths for three trade-off parameter
values that correspond to the TSVD inversions shown in
the top, middle and bottom panels and for the case where
all the observables were included (i.e., no cut).

Figure 10 shows the resulting resolution kernels for only
one depth for the same cases (trade-off parameter values
and cutout extend) as the figures showing TSVD inver-
sion results (Figs. 4, 6, and 8).

8. CONCLUSIONS

The cookie cutter validation test strongly suggests that
the sound speed “plume” below the active region results
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Figure 1. The 2,000 largest eigenvalues – out of 9,800 – for the single-value decomposition of the sound speed per-
turbation problem corresponding to travel time anomalies computed for the active region of June 18, 1998 using MDI
high-resolution mode. Note the succession of large jumps of the eigenvalues, indicative of a good truncation location.

Figure 2. Input data set for 10 distances shown versus position. The two leftmost panels show the corresponding active
region extent as seen in the corresponding continuum image and magnetogram. The four circles, in each panel, illustrate
the extent of the four cylindrical cuts.

from a surface contamination. Indeed, we see a consistent
pattern in the inferred solutions when using two distinct
inversion methods: the plume does not survive much of
a cut while the simulations clearly show that some indi-
cation of the plume should survive the cookie cutter test.
This result is consistent with the conclusions from Ra-
jaguruet al. [3].

The resolution kernels give us us the actual localization
(width and depth) of the solution. They indicate what
trade-off values correspond to acceptable resolutions, and
provide a handle on the effective depth. The cutouts
widen the kernel – as one would expect – but the ker-
nel location remains comparable, especially the effective
depth.



Figure 3. Inferences for one simulation, using the iterative conjugate gradient method (LSQR) inversion methodology. The
five columns correspond to including all the data (leftmost column), and to data with cuts at the four radii of increasing
value (radius increases from left to right). The five rows correspond to different values of the trade-off parameter – trade-
off between resolution and error magnification – with the solution resolution increasing from bottom to top. The lower
left panel is the input topology for that simulation, or the true solution. In these views, the solar surface is at the bottom
of the data cube.
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Figure 4. Inferences for the same simulation as in Fig. 3, but using the truncated single-value decomposition (TSVD). The
five columns correspond to including all the data (leftmost column), and to data with cuts at the four radii of increasing
value (radius increases from left to right). The five rows correspond to different values of the trade-off parameter – trade-
off between resolution and error magnification – with the solution resolution increasing from bottom to top. The lower
left panel is the input topology for that simulation, or the true solution. In these views, the solar surface is at the bottom
of the data cube.



Figure 5. Similar to Fig. 3, but for a slightly different simulation (see lower left panel: contrast near the surface.) Columns
correspond to including all data or 4 different cuts; rows correspond to different values of the trade-off parameter – with
the solution resolution increasing from bottom to top.



Figure 6. Similar to Fig. 4, but for a slightly different simulation (see lower left panel: contrast near the surface.) Columns
correspond to including all data or 4 different cuts; rows correspond to different values of the trade-off parameter– with
the solution resolution increasing from bottom to top.



Figure 7. Inferences for the same methodology as Figs. 3 & 5 (LSQR), but using actual data (inferred values for all panels
since there is no known true solution.)



Figure 8. Inferences for the same methodology as Figs. 4 & 6 (TSVD), but using actual data (inferred values for all panels
since there is no known true solution.)



Figure 9. Resolution kernels, cut aty = 0 shown as a function of position and depth, for five depths (columns) and three
trade-off values (rows). The kernels shown here correspond to a case that uses all the observables (i.e., no cut). The red
symbol indicates the target location.



Figure 10. Resolution kernels, cut aty = 0 shown as a function of position and depth, for one given target depth only
(indicated by the red symbol). The panels show the resolution kernel for five input set cases (columns: all, and 4 cuts)
and five trade-off values (rows), corresponding to the inferences shown in Figs. 4, 6 and 8. The vertical lines illustrate the
radial extend of the cutouts.


