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ABSTRACT

We present the first accurate characterization of high-degree modes, derived

using the best MDI full-disk full-resolution data set available. A ninety day long

time series of full-disk two arc-second per pixel resolution dopplergrams was ac-

quired in 2001, thanks to the high rate telemetry provided by the Deep Space

Network. These dopplergrams were spatially decomposed using our best esti-

mate of the image scale and the known components of MDI’s image distortion.

A multi-taper power spectrum estimator was used to generate power spectra for

all degrees and all azimuthal orders, up to ` = 1000. We used a large number

of tapers to reduce the realization noise, since at high degrees the individual

modes blend into ridges and thus there is no reason to preserve a high spectral

resolution. These power spectra were fitted for all degrees and all azimuthal

orders, between ` = 100 and ` = 1000, and for all the orders with substantial

amplitude. This fitting generated in excess of 5.2 × 106 individual estimates

of ridge frequencies, line-widths, amplitudes and asymmetries (singlets), corre-

sponding to some 6,000 multiplets (`, n). Fitting at high degrees generates ridge
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characteristics, characteristics that do not correspond to the underlying mode

characteristics. We used a sophisticated forward modeling to recover the best

possible estimate of the underlying mode characteristics (mode frequencies, as

well as line-widths, amplitudes and asymmetries). We describe in detail this

modeling and its validation. The modeling has been extensively reviewed and

refined, by including an iterative process to improve its input parameters to bet-

ter match the observations. Also, the contribution of the leakage matrix on the

accuracy of the procedure has been carefully assessed. We present the derived

set of corrected mode characteristics, that includes not only frequencies, but line

widths, asymmetries and amplitudes. We present and discuss their uncertainties

and the precision of the ridge to mode correction schemes, through a detailed

assessment of the sensitivity of the model to its input set. The precision of the

ridge to mode correction is indicative of any possible residual systematic biases in

the inferred mode characteristics. In our conclusions, we address how to further

improve these estimates, and the implications for other data sets, like GONG+

and HMI.

Subject headings: Sun: oscillations — Sun: helioseismology — Sun: activity

1. Introduction

We have long argued that the inclusion of accurate high-degree modes (i.e., 300 ≤ ` ≤
1000) has the potential to improve dramatically inferences of the solar stratification and its

dynamics in the outermost 2 to 3% of the Sun. Rabello-Soares et al. (2000) showed how this

can be carried out for the sound speed and the adiabatic exponent, γ1, since the high-` modes

probe the second and first helium ionization zones. They showed how well the inclusion of

high degree modes helps constrain γ1. Korzennik & Eff-Darwich (1999) have shown how

the inference of the solar rotation very close to the surface (outer 1%) can be dramatically

improved by including unbiased high degree rotational splittings.

Unfortunately, the determination of the characteristics of the high-degree modes (i.e.,

their frequency, line-width, asymmetry and amplitude), remained, over the past two decades,

a challenging task (Korzennik 1990; Korzennik et al. 1990; Rhodes et al. 1991a,b; Korzennik

et al. 1993; Rhodes et al. 1995; Thompson et al. 1996; Hill et al. 1996; Korzennik 1998; Rhodes

1Now at Physics Department, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
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et al. 1998; Korzennik & Eff-Darwich 1999; Rabello-Soares et al. 2001; Rhodes et al. 2001,b;

Reiter et al. 2002a,b; Rhodes et al. 2002a; Korzennik et al. 2003; Reiter et al. 2003; Rhodes

et al. 2003; Korzennik et al. 2004; Reiter et al. 2004; Rabello-Soares et al. 2006a,b; Korzennik

et al. 2008; Rabello-Soares et al. 2008a; Rabello-Soares & Korzennik 2009). Indeed, at high

degrees, individual modes blend into ridges, causing the individual mode characteristics to

become masked by the ridge. For example, as we have shown back in Korzennik (1990), the

ridge frequency is not the target mode frequency, but in fact corresponds to a value offset

by a significant amount. This frequency offset varies with n, ` and m, and is determined by

the precise contributions from all the modes that blend into the ridge.

In global helioseismic data analysis, the individual resonant modes are isolated as fol-

lows, and then fitted. The angular components are separated by performing a spatial decom-

position on each image, projecting the solar surface onto spherical harmonics. The resulting

time series of spherical harmonic coefficients at a given target (`,m) are Fourier transformed,

leading to the separation of the orders of the radial wave function, n, in the frequency do-

main. However, a spherical harmonic decomposition is not orthogonal over a hemisphere,

or, for that matter, the visible solar surface from a single vantage point of view. This results

in what is called spatial leakage, namely, modes with similar degrees (`′ ∼ `) and azimuthal

orders (m′ ∼ m), leak into the estimate of a target mode spherical harmonic coefficient at a

given (`,m).

At low and intermediate degrees, most of these leaks can be separated from the target

mode in the frequency domain and individual modes are resolved and fitted2. However, at

high degrees, the spatial leaks lie closer in frequency, due to a smaller frequency separation,

and the modes become wider, as their lifetimes get smaller. The combination of these two

effects results in substantial overlap of the target mode with its spatial leaks and eventually

all the spatial leaks blend into a ridge. This blending occurs for ` ≥ 300 for the f-mode, and

for ` ≥ 200 for the p-modes (i.e., p1 to p4, and at even lower degrees for the higher orders).

Once modes have blended into ridges, one needs a very good model of the relative amplitude

of all the modes that contribute to the ridge power distribution to recover the actual mode

characteristics. Key elements for this model are the leakage matrix coefficients and a very

good knowledge of the instrumental properties.

The high degree mode characteristics presented in this paper are based on ridge fitting,

for degrees up to ` = 1000, using one of the longest available full-disk observations acquired

by the Michelson Doppler Imager (MDI), an instrument on board the Solar and Heliospheric

2In some cases the closest leak, i.e., δm = 2, δ` = 0, depending on the mode FWHM and the spectral

resolution, blends with the target mode, but most fitting methods account for this m-blend.
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Observatory (SOHO). The data set we have analyzed is described in Section 2 as well as the

data reduction procedure and the spectral estimator we used.

In Section 3, we describe the fitting procedure we used to derive ridge characteristics at

high degrees. Section 3.1 describes the methodology we implemented to recover the mode

characteristics from the fitted ridge values. It essentially consists of building a sophisticated

model of the underlying modes that contribute to the ridge power distribution. This model

generates and fits a synthetic ridge, producing values that are used to derive a measure of

the bias between the resulting ridge properties and the underlying target mode used in the

modeling.

Section 4 presents the resulting best estimate to date of high-degree mode characteristics.

It includes estimates of the accuracy of the correction, derived from a comprehensive error

budget of the methodology. Finally, in Section 5, we present our conclusions, how to further

improve our estimates, and any implications for other data sets, like GONG+ and HMI.

2. The Data Set

The MDI instrument was launched on December 2nd, 1995 on board the SOHO space-

craft. The spacecraft, in orbit around the L1 Lagrangian point, is in constant view of the Sun,

providing a near perfect platform for uninterrupted observations of the solar surface (Scher-

rer et al. 1995). While MDI took high resolution full-disk images nearly all the time, the

limited telemetry of the spacecraft resulted in transmitting to the ground only binned down

data, (from 1024× 1024 down to 200× 200 pixels), to fit the data stream within the teleme-

try limits. Nevertheless, during limited time periods, but nearly each year, NASA’s Deep

Space Network was commissioned to provide additional telemetry band-width to download

unbinned images. The epochs when this occurred over the MDI mission, known as Dynamics

runs, are listed in Table 1.

The optimal epoch when full resolution full-disk Dopplergrams are available was ac-

quired during 2001, with nearly 90 days of continuous observations and a high duty cycle.

In order to derive accurate estimates, using high SNR power spectra, we focused our efforts

on analyzing the 2001 Dynamics epoch, combining them both into one time series.

2.1. Data Analysis

The MDI Dopplergrams analyzed for the study presented here were spatially decom-

posed onto spherical harmonics, using our best knowledge of the instrumental image distor-
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Year Start End Length Name

month/day [day]

1996 05/23 07/24 61.3 Dyn. I

1997 04/13 06/12 60.4 Dyn. IIa

1997 06/13 06/19 5.2 Dyn. IIb

1997 06/19 06/30 11.9 Dyn. IIc

1997 06/30 07/14 13.2 Dyn. IId

90.7

1998 01/09 03/03 52.9 Dyn. IIIa

1998 03/05 04/10 36.0 Dyn. IIIb

88.9

1999 02/28 03/12 11.6 Dyn. IVa

1999 03/13 05/28 76.6 Dyn. IVb

88.2

2000 04/02 04/24 21.5 Dyn. Va

2000 05/09 07/11 62.5 Dyn. Vb

2000 08/15 08/29 13.9 Dyn. Vc

97.9

2001 02/28 05/14 75.1 Dyn. VIa

2001 05/14 05/28 13.5 Dyn. VIb

88.6

2002 01/10 02/05 25.4 Dyn. VIIa

2002 02/14 03/09 22.2 Dyn. VIIb

2002 03/18 05/22 65.3 Dyn. VIIc

2002 05/24 06/03 9.3 Dyn. VIIe

122.2

Year Start End Length Name

month/day [day]

2003 01/18 02/16 28.3 Dyn. VIII

2003 10/18 11/17 29.7 Dyn. IX

2004 07/04 09/06 63.4 Dyn. X

2005 06/25 08/15 51.0 Dyn. XIa

2005 08/17 08/31 13.5 Dyn. XIb

2006 03/24 05/24 60.5 Dyn. XII

2007 12/09 02/02 55.3 Dyn. XIIIa

2008 03/03 05/04 62.2 Dyn. XIIIb

2009 05/18 06/18 31.0 Dyn. XIVa

2009 07/02 07/12 9.7 Dyn. XIVb

2009 07/14 07/20 5.4 Dyn. XIVc

46.1

2010 05/08 06/07 30.3 Dyn. XVa

2010 06/07 06/15 7.3 Dyn. XVb

2010 06/15 06/15 0.6 Dyn. XVc

2010 06/15 06/28 13.0 Dyn. XVd

2010 06/28 07/01 2.3 Dyn. XVe

2010 07/01 07/01 0.6 Dyn. XVf

2010 07/03 07/10 6.5 Dyn. XVh

2010 07/10 07/12 2.0 Dyn. XVi

62.6

Table 1: Epochs when full-disk MDI Dopplergrams are available.

tion. Korzennik et al. (2004) have described in minute detail the two components of this

distortion. One component results from the characteristics of the MDI instrument optical

package itself. It was estimated from the instrument design optical properties using ray

tracing (ZEMAX) and validated on the actual in-flight data. The other component had to

be introduced to replicate the ellipticity of the solar limb observed in the MDI images, an

ellipticity much larger than that of the solar limb. This ellipticity might be the result of

a small tilt of the CCD with respect to the focal plane3. This tilt was estimated to be

3The camera package of MDI was reassembled shortly before launch to alleviate problems with the CCD

package. This effectively invalidated a lot of the pre-flight tests carried out on the optical package and is
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∼ 2.6o (Korzennik et al. 2004; Rabello-Soares et al. 2008a, and references therein). The

improved spatial decomposition we used incorporates both components of the instrumental

image distortion. The resulting time series of spherical harmonic coefficients were then gap

filled using a maximum entropy method adapted by Rasmus Munk Larsen and based on

Fahlman & Ulrych (1982). The resulting 259,200 minute long time series have a 97.0% fill

factor (95.8% prior to gap filling).

Since the ridges at high degrees have large widths, there is no need for high spectral

resolution. Therefore, we opted to reduce the realization noise by using a high order sine

multi-taper power spectrum estimator. We selected a 61 terms multi-taper, that corresponds

to a 90 day long time series to an effective spectral resolution of 7.8µHz. This value is

approximately the mode FWHM at ` = 500 and ` = 300 for the n = 0 and n = 1 modes,

respectively. But at these degrees the modes blend into ridges, so more relevant is the ridge

FWHM, that is about 14 µHz at ` = 300 for the f-mode and about 17 µHz for n = 1 at

` = 200. Using this high order sine multi-taper spectral estimator causes some modes at

lower degrees to be substantially wider, while still resolving the ridge itself. This widening

has the beneficial effect of blending resolved, or partially resolved, modes into ridges at

intermediate degrees (100 ≤ ` ≤ 300). This blending results in a range of degrees where we

can compare ridge to mode characteristics, while it eliminates the intermediate case where

modes are only partially resolved.

Indeed, the resulting blending of modes at intermediate degrees allows us to fit ridges at

degrees where resolved modes can and have been measured. This allows us to test whether

our methodology to derive mode characteristics from ridge fitting is correct: can we recover

the known mode characteristics from the measured ridge ones? We were able to fit ridges

down to ` = 100, resulting in an overlap between mode and ridge fitting covering 100 ≤ ` ≤
300 for the f-modes and 100 ≤ ` ≤ 200 for the p-modes. Figure 1 shows the Dynamics 2001

power spectrum for the zonal modes (m = 0) and the extent of the ridge fitting.

3. The Ridge Fitting Methodology

The ridge fitting methodology we used consists of fitting the power spectra with a sum

of modified Lorentzian plus a background term, namely:

P`,m(ν) =
∑
n

Ãn,`,m La(ν, ν̃n,`,m, Γ̃n,`,m, α̃n,`,m) +B`,m(ν) (1)

likely to be the source of the small tilt of the CCD with respect to the focal plane.
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Fig. 1.— Gap-filled Dynamics 2001 power spectrum, displayed on a logarithmic scale, for

the zonal modes (m = 0). The dots represent the fitted ridges (black) or modes (green), the

circles are the remaining fitted ridges after rejecting the largest fitted order for each degree

(see text for explanation). The largest degree fitted using resolved mode fitting at low and

intermediate degrees is indicated, for each order, by a large green dot.

where La, the modified asymmetric Lorentzian, is defined as (using k as a shorthand for

n, `,m)

La(ν, ν̃k, Γ̃k, α̃k) =
1 + α̃k (ζk − α̃k

2
)

1 + ζ2
k

(2)

where ζk = ζn,`,m(ν) is simply

ζn,`,m =
ν − ν̃n,`,m

Γ̃n,`,m
2

(3)

and where B`,m, the background term, is defined as a polynomial expansion in ν

logB`,m(ν) =
5∑
i=0

cbi(`,m) ηiν (4)

with ην = ν−νo
νs

. The parameters νo and νs were both set to 4 mHz, remapping the 0 to 8 mHz

frequency range to the [−1, 1] interval. This formulation guarantees the fitted background
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to be a positive definite quantity. The fitted parameters, ν̃n,`,m, Γ̃n,`,m, α̃n,`,m, Ãn,`,m, are the

resulting ridge characteristics, namely the ridge frequency, FWHM, asymmetry, and power

amplitude, complemented by the background coefficients, cbi(`,m).

The fitting was performed using a least-squares minimization, and carried out in mul-

tiple steps, starting with some good initial guesses. At first, only the amplitudes and the

background coefficients were adjusted, using a frequency range that covers all the fitted

orders. Indeed, the background can only be adequately constrained when fitting a wide fre-

quency range, since there is limited spectral range between the ridges. Next, parameters for

each individual order were readjusted, but this time over a limited frequency range centered

on the current estimate of the ridge frequency for that order. For convergence stability, not

all fitted parameters were initially adjusted. We first adjusted only the amplitude and the

FWHM, then added the central frequency, and only then the asymmetry. The whole proce-

dure was repeated several times, readjusting the background term and all the amplitudes and

then fitting each order individually again. The table of initial guesses was compiled by fitting

only the zonal spectra, smoothing the resulting values, either over ` or ν, as appropriate,

and iterating.

While one can see ridges up to the Nyquist frequency in Fig 1, the amplitude (or

contrast) of the high order ridges get progressively smaller and smaller. As a result, fitting

the high order ridges is poorly constrained and becomes numerically unstable. Therefore,

the number of orders that were fitted at each degree had to be limited by some objective

criteria. The criteria we adopted is to fit all the orders whose power amplitude is at least

0.2% of the largest observed amplitude at that degree (i.e., down to a 1:500 ratio). Still,

the properties of the highest fitted order, the one with the smallest amplitude at a given

degree, show systematic effects that are easily understood in term of cross talk between

the background level and contributions from the remainder orders that are not taken into

account. We thus rejected a posteriori the highest order, n, at each degree.

The fitting has been carried out for all degrees and all azimuthal orders between ` = 100

and 1000, producing in excess of five million individually fitted ridges4. These correspond

to 6,681 multiplets (n, `) that were further reduced to 5,780 values after rejecting the high-

est fitted n for each `. Figure 2 shows the coverage and properties of the fitted values

corresponding to ridge characteristics, once reduced to multiplets.

We should point out that the reduction from singlets to multiplets consists not only

of fitting Clebsch-Gordan coefficients to the frequencies, but also of fitting polynomials in

m/` for the amplitude, FWHM and asymmetry. This is explained and justified in the next

4In past work, we only fitted some 50 azimuthal orders at every 10th degree.
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Fig. 2.— Results from ridge fitting, namely ridge frequency, amplitude, FWHM and asym-

metry, once reduced to multiplets. Top left panel: coverage of the fitting in the `− ν plane.

The color corresponds to the value of the order, n, while the black dots are the a posteriori

rejected values, corresponding to the largest order for each degree (see text for explanation).

The same color scheme is used in all the panels. Top right panel: power amplitude as a

function of degree, the two horizontal lines are in the 1:500 ratio. Lower left panel: power

amplitude as a function of frequency. Lower middle panel: FWHM as a function of frequency,

the horizontal dash line corresponds to WN,T , the spectral resolution of the Nth order sine

multi-taper (N = 61 and T = 90 days). Lower right panel: asymmetry as a function of

frequency. Notice how the FWHM and asymmetry of the rejected values (black dots) are

indeed suspicious.

sections.
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3.1. The Ridge to Mode Correction Methodology

The methodology we implemented to recover mode characteristics from ridge fitting

consists of modeling in detail the contribution of all the modes to a given ridge. This model

is used to generate a synthetic spectrum that is fitted in a way similar to the data, and

produces a correspondence between ridge characteristics and mode characteristics. This

method, initially presented in Korzennik et al. (2004), was further expanded, fine tuned and

refined as described in Rabello-Soares et al. (2008a).

More recently, we revisited the methodology to not only recover the mode frequency,

but also the FWHM, asymmetry and amplitude. The codes for the modeling and for the

fitting were converted from a 4GL programming language (IDL) to a compiled language

(F90) to make efficient use of the Smithsonian Institution High Performance Computing

cluster, a machine with, to date, a little over 2,600 compute cores. In the process, the

modeling code was also restructured so as to clearly identify all the input parameters used

by the methodology.

3.1.1. The Modeling Methodology

The modeling method consists of producing synthetic spectra by overlapping all the

individual modes that leak into a simulated snippet of spectrum around a given mode. Thus

for each {n, `,m}, the model consists in computing the power spectrum estimated for a

limited frequency range, w, centered on νn,`,m, and given by the following superposition:

P`,m(ν) =

(∑
`′

∑
m′

Qn,`,m
`′,m′ La(ν, νn,`′,m′ ,Γn,`′ , αn,`′)

)
⊗X (ν,N,WT ) +B`,m

p (5)

where ⊗ is the convolution operator, X (ν,N,WT ) is an empirically derived function, N the

number of sine multi-tapers, WT = 1/T the spectral resolution corresponding to a time

series of length T , and Bp represents the power background value. The frequency range of

the model, w, is given by

w = 15 (Γn,` +
∂ν

∂`
) (6)

as to cover the full extent of the ridge. The empirical convolution function, X , is given by:

X (ν,N,WT ) =

{
(1− ( 2 ν

WN,T fN
)2)

1
N if |ν| ≤ WN,T fN

2

0 otherwise
(7)

where fN is the factor needed to keep the FWHM of X to remain equal to WN,T = N WT ,

the resolution of the Nth order sine multi-taper. Note that the FWHM of the convolution
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L ⊗ X , the effective FWHM, ΓEn,`, is

ΓEn,` =
√

Γ2
n,` +W 2

N,T (8)

i.e., the mode FWHM widened, in quadrature, by the resolution of the Nth order sine multi-

taper. For cases where Γn,` > WN,T , the result of the convolution is nearly equivalent to an

asymmetric Lorentzian with that effective FWHM. But for cases where Γn,` < WN,T (narrow

modes, the low ` and low n cases) the shape of L⊗X is no longer an asymmetric Lorentzian,

as illustrated in Fig. 3. As a result, the ridge produced by the superposition described by

Eq. 5, for intrinsically narrow modes, is narrower than the result of superposing widened

Lorentzians.

The mode profiles are represented by asymmetric Lorentzians, La, as defined in Eq. 2

while the frequencies, νn,`,m and νn,`′,m′ , are estimated using

νn,`,m = νn,`,m=0 + δνn,`(m) (9)

and

νn,`′,m′ = νn,`′,m=0 + δνn,`′(m
′) (10)

and where

δνn,`(m) =
6∑
i=1

ai(n, `)Pi(
m

L
) (11)

The amplitude of the leaked power, Q, is given by:

Qn,`,m
`′,m′ = (C̃n,`,m

`′,m′ )2Rp(`, `
′) (12)

where C̃ corresponds to the distorted spatial leak coefficients, the sum of the radial and

horizontal components:

C̃n,`,m
`′,m′ = C̃r(`

′,m′; `,m) + βn,` C̃h(`
′,m′; `,m) (13)

with βn,` being the ratio of the horizontal to the vertical displacement components.

The power ratio term, Rp, is introduced to represent the power attenuation with degree

resulting from the instrumental PSF5, and is parametrized by a polynomial expansion as

follows:

log [R(`, `′)] =
2∑

k=0

cRk (`) (`′ − `)k (14)

5We recognize that this is very much an empirical approach, but we would need a reliable model of the

instrumental PSF to do it differently.
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Fig. 3.— Example of convolutions L ⊗ X (see text), for two values of N (top and bottom

panels) and three values of Γ (left to right). The black curves are the resulting convolutions,

the dash red and green curves represent L and X , respectively, while the red dot-dash curves

correspond to the widened L, using the effective FWHM. The vertical lines indicate the

corresponding FWHM. Only for the large N and narrow peak example does the resulting

convolution differ substantially from a widened Lorentzian. This corresponds to the modeling

of low ` low n ridges.

The distortion of the leaks by the differential rotation is given by

C̃x(`
′,m′; `,m) =

∑
`′′

G`′′

`′,m′Cx(`
′′,m′; `,m) (15)

for x = r, h, i.e., the radial and horizontal components, respectively. The mixing coefficients,

G, derived by Woodard (1989), are:

G`′

`,m = G`′

`,m(b2, b4,
∂ν

∂`
) = (−)p

∫ π

−π
cos(pΘ + δΦ(Θ))dΘ (16)

where

p =
`− `′

2
(17)
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δΦ(Θ) = c0(c1 sin(Θ) + c2 sin(2Θ)) (18)

c0 = −m
2

1
∂ν
∂`

(19)

c1 = −1

2
(b2 y

2 + b4 y
4) (20)

c2 =
1

16
b4 y

4 (21)

y2 = 1− (
m

L
)2 (22)

and where b2 and b4 represent the solar differential rotation, when parametrized as

Ω(θ)

2π
= b0 + b2 cos2 θ + b4 cos4 θ (23)

with θ being the co-latitude and Ω(θ) the surface rotation rate.

The undistorted leakage coefficients, C, are given by the following integrals (see Ko-

rzennik et al. 2004):

Cr(`,m; `′,m′) =

∮
WY m∗

` Y m′

`′ sin θ cosφ dΩ (24)

Cθ(`,m; `′,m′) =− 1

L

∮
WY m∗

` ∂θY
m′

`′ cos θ cosφ dΩ (25)

Cφ(`,m; `′,m′) =
1

L

∮
WY m∗

` ∂φY
m′

`′
1

sin θ
sinφ dΩ (26)

where ∗ represents the complex conjugate operator, Y m
` the spherical harmonic of degree `

and azimuthal order m, θ and φ the co-latitude and longitude respectively, and W (θ, φ) the

spatial window function of the observations – i.e., the function that delimits the angular span

of the observations and that includes any additional attenuation like the spatial apodization.

The two components of the leakage matrix are the radial component Cr and the horizontal

components Ch = Cθ + Cφ. The complete list of the input parameters for our modeling is

summarized in Table 2.

3.1.2. Model Derivation

A model was run at first using some initial input parameters. We ran it for every degree

between ` = 100 and ` = 1000, and for 51 values of m, spanning uniformly the [−`,+`]
interval. That initial input set was derived using results from ridge fitting as well as results

from mode fitting at low and intermediate degrees, namely:
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νn,` mode frequency

Γn,` mode FWHM

αn,` mode asymmetry

Bp(`) power background

ai(n, `) frequency splittings coefficients

cRk (`) coefficients defining the power ratio wrt `

b2, b4 parametrization of the surface differential rotation

Nδ`′ , Nδm′ extent of sum on `′ and m′ in Eq. 5

Nδ`′′ extent of sum on `′′ in Eq. 15

Cr, Ch radial and horizontal leakage matrix coefficients

βn,` horizontal to vertical ratio, βn,` = (
νn,`
ν0,`

)2

∂ν
∂`

tabulated values, derived from {νn,`}

Table 2: List of input parameters, and secondary input parameters (bottom, whose values

are derived from the primary parameters), for the ridge modeling.

– The values for the mode frequencies, νn,`, were derived from ridge fitting results, after

smoothing them using a bivariate polynomial in n and `.

– The FWHM values, Γn,`, were derived from values obtained by fitting individual modes

at low and intermediate degrees6 combined with values derived from ridge fitting,

corrected in a somewhat crude way for the mode to ridge widening.

– The asymmetry, αn,`, was set to be a bivariate polynomial in ν and `, based on ridge

fitting results (since, as shown below, the ridge asymmetry is a good estimate of the

mode asymmetry).

– The background values, Bp(`), were set by a polynomial in `, derived from the fit to

the zonal power spectra.

– The frequency splitting coefficients, ai(n, `), were determined from a polynomial in

log(ν/L), with only even non-zero coefficients. These coefficients were derived by

fitting low and intermediate frequency splittings, estimated by fitting resolved modes.

– The power ratio coefficients, cRk (`), were derived by fitting ∂ log Ã
∂`

, where the power

amplitudes, Ã, correspond to measured zonal ridge power amplitudes, themselves

smoothed using a bivariate polynomial in ν and `.

– The ratio βn,` was set to (νn,`/νn=0,`)
2, after fitting a cubic polynomial in

√
L to the

f-mode frequencies derived from ridge fitting.

6We used the result from fitting a 12.5 year long time series of MDI observations (Korzennik, in prep.).



15

– We adopted b2 = −69.6 ± 1.7 nHz and b4 = −58.8 ± 2.9 nHz, values derived from

a rotation inversion of a co-eval epoch using individual resolved modes at low and

intermediate degrees (Eff-Darwich & Korzennik 2012).

– The derivative ∂ν
∂`

was computed directly from the set of {νn,`}.

– The extent of the summations were set to

Nδ`′ =

{
10 ` ≤ 400

2(1 + `/100) otherwise
(27)

Nδ`′′ =

{
12 ` ≤ 600

2`/100 otherwise
(28)

while Nδm = 10. These values were determined to be optimum in Rabello-Soares et al.

(2008a).

– The coefficients of the leakage matrix, Cr, Ch, were computed by one of us (JS) to

correspond to the spatial decomposition of the MDI Dynamics observations.

Figures 4 to 6 present the key properties of this model. Figure 4 shows the raw frequency

offset (i.e., the difference between the target mode and the ridge frequency), while Fig. 5

shows on the one hand the zonal frequency offset, ∆ν
n,`,m=0, and how it scales primarily with

frequency, and on the other, the frequency offset with respect to its corresponding zonal

value, ∆ν
n,`,m − ∆ν

n,`,m=0 divided by the `, since this quantity scales linearly with `. Once

scaled, it is mostly a function of the relative azimuthal order, m
`

.

Figure 6 shows the mode to ridge widening, for the zonal ridges, and also how the ridge

width varies with the relative azimuthal order, m
`

, even though the mode width itself, an

input parameter to the model, is constant with m. Similarly, that figure shows that the ridge

asymmetry changes with m
`

, while the corresponding input model mode asymmetry is also

constant with m. The distortion of the eigenvalues by the differential rotation changes the

observed power distribution with a strong dependence on m – hence it not only changes the

ridge central frequency but its width and asymmetry.

3.1.3. The Modeling Iterative Process

Some of the input parameters are not precisely known a priori since they are the pa-

rameters we want to estimate accurately, and are thus approximated by values derived from

ridge fitting. While we have shown that the ridge to mode frequency correction sensitivity to

these input parameters is small (Rabello-Soares et al. 2008a), we recognize that improving

the input parameters whenever possible can only improve the accuracy of such corrections.
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Fig. 4.— Top panel: coverage in the ` − ν of the modeling (shown for m = 0 only), the

color corresponds to different values of n. Bottom panels: frequency offsets, ∆ν , between

mode and ridge frequency as a function of degree, ` (left), frequency, ν (middle), and relative

azimuthal order, m/` (right).

In our continuing effort to improve our determination of unbiased mode parameters at high-

degrees, we implemented an iterative procedure to adjust some of the input parameters so

as to produce a ridge model whose characteristics match the measured ridge values.

We adjusted iteratively the following parameters of the model input set: νn,`, Γn,`, αn,`,

ai(n, `) and cRk (`). It consisted of the following adjustments at each iteration step:

– Input frequencies, νn,`:

νn,` ← νn,`,m ← ν̃n,`,m −∆ν
n,`,m (29)

where ν̃ is the observed ridge frequency, estimated by fitting the observations, and

∆ν
n,`,m is the ridge to mode frequency offset predicted by the model –i.e., the model

resulting ridge frequency minus the model input mode frequency– interpolated at each

m, using a polynomial fit in m
`

. The singlets frequencies, νn,`,m, are then reduced to

multiplets, νn,`, by fitting Clebsch-Gordan coefficients.
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Fig. 5.— Top panels: frequency offsets, ∆ν , between mode and ridge frequency (as in Fig. 4)

but for m = 0 only, plotted as a function of degree or frequency. Bottom panels: frequency

offsets with respect to the corresponding zonal value and divided by `/100, also plotted versus

degree or frequency. Note how ∆ν
m=0 is primarily a function of ν, while (∆ν − ∆ν

m=0)/` is

primarily a function of m/`. The color corresponds to the value of the order, n.

– The FWHM, Γn,`, is adjusted at each iteration as follows:

Γn,` ←
√

(Γ̃Mn,` f
Γ
n,`)

2 −W 2
N,T (30)

where the factor fΓ is given by

fΓ
n,` =< Γ̃n,`,m/Γ̃

M
n,`,m > (31)

and Γ̃n,`,m is the ridge FWHM estimated by fitting the observations, while Γ̃Mn,`,m is the

ridge FWHM measured when fitting the model, interpolated at each m by a polynomial

fit in m
`

. The brackets represent averaging over m. The quantity WN,T is the frequency

resolution, set to the resolution of the observations (N = 61 and T = 90 days).

– Input asymmetry, αn,`, similarly is adjusted at each iteration as follows:

αn,` ← αMn,` f
α
n,` (32)
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Fig. 6.— Top panels: comparison of the model’s ridge FWHM (colored dots) to the input

effective FWHM (black dots), versus degree, frequency or m/` (left to right respectively).

Bottom panels: comparison of the model’s ridge asymmetry (colored dots) to the input

asymmetry (black dots), versus degree, frequency or m/` (left to right respectively). The

left two panels in both rows show only the m = 0 values. The right most panels show

the variation with respect to the corresponding zonal values as a function of the relative

azimuthal order. The diamond symbols in these panels correspond to the model mode input

values: both ΓEn,` and αn,` are constant with m. The variation seen here results primarily

from the variation of the leakage with m. The color corresponds to the value of the order,

n.

where the factor fα is given by

fαn,` =< α̃n,`,m/α̃
M
n,`,m > (33)

and α̃n,`,m is the ridge asymmetry estimated by fitting the observations, while α̃Mn,`,m
is the ridge asymmetry measured when fitting the model, interpolated at each m by a

polynomial fit in m
`

. The brackets represent averaging over m.

– Amplitudes and cRk (`) are also re-adjusted at each iteration as follows:

An,` ← AMn,`/(
∑
k

fAk `
k) (34)



19

where the polynomial
∑

k f
A
k `

k is determined by fitting the ratio ÃMn,`,m=0/Ãn,`,m=0 with

respect to `. ÃM and Ã represent the model and the observed ridge power amplitudes,

respectively, for the zonal modes.

The cRk (`) coefficients are then derived by fitting ∂ logA
∂`

.

– The following input variables are then readjusted or, for the secondary input parame-

ters, recomputed as follows:

— The FWHM, Γn,`, and the asymmetry, αn,`, are smoothed using a bivariate poly-

nomial in ν and `.

— The splittings coefficients, ai(n, `), are recomputed using the new input frequen-

cies.

— The horizontal to vertical ratio, β, is recomputed using the same prescription as

in the preceding section, but using the new input frequencies.

— The derivative, ∂ν
∂`

is recomputed using the new input frequencies.

This procedure was run for some 10 iterations, where the models were computed only

every 5th degree. The resulting input set was then used to compute a final model at each

degree. After a handful of iterations, the characteristics of the model barely changed and

the procedure converged, with relative changes at the last steps of the iterative process at

the 0.1% level.

3.1.4. Sensitivity of the Model

The values for νn,`, Γn,`, αn,`, c
R
k and ai(n, `) have been fine tuned using an iterative

process. Since the resulting ridge model values when using these parameters match the

observed ridge values, their uncertainty and thus the corresponding model sensitivity can

be estimated by the changes at the last iteration (0.1%). A more conservative alternative

approach is to perturb each value by its corresponding measured ridge uncertainty.

We computed additional models where some input parameters were increased by their

corresponding observational uncertainty.

The effect of perturbing the modes amplitudes, A, frequencies, ν, FWHM, Γ, asymmetry,

α, and, rotational splittings, ai, by one-sigma are illustrated in Fig. 7, where the relative

change of the frequency offsets between ridge and mode, ∆ν , is shown as the change of

the zonal offset, ∆ν
n,`,m=0, and as the change of the scaled frequency offset with respect to

the zonal value, (∆ν
n,`,m − ∆ν

n,`,m=0)/`. Note how the zonal offset is barely affected, except

when perturbing the FWHM. The azimuthal signature is also small with just the FWHM
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perturbation showing a systematic and specific change.

The input parameters βn,`, the horizontal to vertical ratio, b2, b4, the coefficients corre-

sponding to the parametrization of the surface differential rotation, and Cr, Ch, the leakage

matrix coefficients, were not iterated upon. The sensitivity of the model to their accuracy

needs also to be estimated.

The value of βn,` is well constrained by the values of νn,` under the prescription we

used. Still, this prescription does not force βn=0,` to be exactly unity7. This prescription is

also based on estimating that ratio using a formula resulting from a specific outer boundary

condition, namely that the Lagrangian pressure perturbation vanish (δp = 0), in the small

amplitude oscillation equations for the adiabatic and non-magnetic case. While this is most

likely a very good approximation, the conditions near the surface are not adiabatic, and the

ratio β might not be exactly the one predicted by the adiabatic case. Rhodes et al. (2001)

estimated that β is 0.995 ± 0.004 of the theoretical value. We ran models with perturbed

values of β to assess their sensitivity to this parameter. The effect of perturbing β is illus-

trated in Fig. 8. That figure shows that the zonal frequency offset changes proportionally

to the perturbation, while the change of the scaled offset with respect to the zonal values

displays a small azimuthal signature that peaks at the 1 and 2% levels, respectively (in terms

of relative change of the offset).

We selected our best estimate for b2 = −69.6 ± 1.7, b4 = −58.8 ± 2.9 nHz, using our

own inversion profile derived from measuring rotational frequency splittings at low and in-

termediate modes for a co-eval epoch (Eff-Darwich & Korzennik 2012). We have computed

models using one-sigma perturbation in b2 and b4, as shown in Fig. 9, to assess the effect of

perturbing the parametrization of the surface differential rotation used to compute the mode

mixing resulting from the distortion of the eigenfunctions by the differential rotation. The

change of the zonal frequency offset is negligible (at the 0.1% level), while the change of the

scaled offset with respect to the zonal values displays a clear azimuthal signature at the 2%

level. This illustrates the interdependency between knowing the rotation profile to properly

correct the frequency splittings and deriving the rotation profile from the splittings.

Finally, to quantify the sensitivity of our result to the leakage matrix coefficients, we

computed models that use an independent estimate of the leakage coded by one of us (SK).

The leakage was computed by spatially decomposing images of the three components of the

line of sight velocity signal (see Eqs. 24 to 26). The sampling of these images and their

spatial apodization were set so as to correspond to the MDI Dynamics observations. This

was carried out for the same subset of (`,m), as for the reference leakage matrix coefficients

7In fact it varies within 0.9970 and 1.0011.
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Frequency offset relative sensitivity

Parameter Perturbation zonal azimuthal

frequency, ν 1 σ 0.001± 0.002 (0.009) 0.001 (0.001± 0.002)

FWHM, Γ 1 ε 0.012± 0.012 (0.052) 0.007 (0.001± 0.005)

asymmetry, α 1 σ 0.003± 0.006 (0.004) 0.001 (0.001± 0.002)

amplitude, A 1 ε 0.001± 0.001 (0.001) 0.001 (0.001± 0.001)

splittings, ai 1 σ 0.001± 0.001 (0.001) 0.001 (0.001± 0.002)

ratio, β 2% 0.016± 0.005 (0.018) 0.001 (0.001± 0.002)

rot. b2, b4 1 σ 0.001± 0.001 (0.001) 0.022 (0.001± 0.014)

leakage matrix Bo = 0o 0.008± 0.006 (0.013) 0.028 (0.001± 0.023)

leakage matrix Bo = −5.68o 0.005± 0.008 (0.011) 0.021 (0.001± 0.020)

leakage matrix Bo = −5.68o & PSF −0.029± 0.022 (0.051) 0.091 (0.004± 0.076)

Table 3: Sensitivity of the ridge to mode frequency offset with respect to the model’s input

parameters. The zonal values are characterized by the mean and RMS of the differences

(and within parenthesis the maximum of the absolute value of the binned differences), while

the azimuthal values are characterized by the maximum of the absolute value of the binned

differences (and within parenthesis the mean and RMS of the raw differences).

(computed by JS).

We computed a set of leakage matrix coefficients for Bo = 0, where Bo is the heliographic

latitude at disk center, and for Bo = −5.68o, the mean value of Bo for the 2001 Dynamics

epoch. We computed another set for that same value of Bo, but including an estimate of the

PSF of MDI. That estimate was derived from running the procedure HGEOM, a procedure that

is part of the GONG reduction and analysis software package. HGEOM returns an estimate

of the azimuthaly averaged MTF (i.e., the Fourier transform of the PSF, see Korzennik et

al. 2004, and references therein). We thus also included an axisymmetric PSF, whose profile

was set by the MTF estimated by HGEOM.

The changes resulting from using different leakage matrices are presented in Fig. 10.

This figure shows that using a different leakage matrix computation produces a relative

change in the zonal frequency offset at the 1% level, except when including a PSF, where

that change peaks at 5%. Similarly, the largest change in the scaled offset with respect to the

zonal offset is seen when including a PSF. These results corroborate our previous conclusions

(Korzennik et al. 2004) that the largest contribution to the uncertainty of the high degree

mode properties is our limited knowledge of the PSF of the MDI instrument.

The relative change of ∆ν for all the perturbed models, presented in Figs. 7 to 10,

are also summarized in Table 3, where the zonal values are characterized by the mean and
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Fig. 7.— Comparison of the ridge to mode frequency offset, produced by different models.

The top panels show the zonal modes only as a function of frequency, while the bottom

panels show the scaled offset, relative to the zonal values, as a function of m/`. The left

panels compare the offset, the right panels show the relative difference (top right) or the

difference (bottom right). The lines with error bars represent binned values and the scatter

within each bin. The models correspond to perturbing the modes amplitudes, A, frequencies,

ν, FWHM, Γ, asymmetry, α, and, rotational splittings, ai, by one-sigma.

RMS of the differences, while the azimuthal values are characterized by the maximum of the

absolute value of the binned differences.

The sensitivity of the ridge to mode frequency offset to a 1σ perturbation is indeed at

the 0.1% level, but for the FWHM and for changes of β and the leakage matrix. In the

case of the FWHM, the 1σ perturbation is a large perturbation because the ridge fitting

precision is low. Such a perturbation produces a model whose ridge width is, on average, off

by 4% (versus 0.2% for the reference model) when compared to the observed ridge width.

So the model precision is constrained by producing a model that matches the observations

and not by the uncertainty on the ridge width. As for the sensitivity with β we see that

it is proportional to the perturbation, so if we consider that β may be off by as much as

0.5% from the theoretical value (Rhodes et al. 2001), the model uncertainty is at most at the
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Fig. 8.— Comparison of the ridge to mode frequency offset, produced by different models,

in the same format as Fig. 7. The effect of perturbing the horizontal to vertical ratio, β, is

illustrated for positive and negative perturbation of 2 and 5%.

0.4% level. As for the sensitivity of our model to a particular leakage matrix, we see large

changes associated to our limited knowledge of the PSF of the MDI instrument. A more

conservative estimate of the model precision is thus more at the 0.5% level than the 0.1%

level, but could be as large as a few percent if the leakage matrix we use is off. We opted,

somewhat arbitrarily, to use 0.1% and 1% as basic and conservative values for the precision

of ∆ν , the ridge to mode frequency offset.

4. Results

The approach we used to derive the characteristics of high degree modes is to fit and

characterize the power ridges and compute a sophisticated model of the ridge power to

estimate the bias between the ridge characteristics and the underlying characteristics of the

mode. While the most useful and sought after characteristic is the mode frequency, we

have also expanded our efforts to derive estimates of the mode width, its asymmetry and its

amplitude.
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Fig. 9.— Comparison of the ridge to mode frequency offset, produced by different models, in

the same format as Figs. 7 and 8. The figures show the effect of perturbing the parametriza-

tion of the surface differential rotation (b2, b4) used to compute the mode mixing resulting

from the distortion of the eigenfunctions by the differential rotation.

4.1. Frequencies & Frequency Splittings

Mode blending causes the ridge frequency to be offset with respect to the underlying

target mode frequency. Our ridge model allows us to estimate this offset, and the sensitivity

of that estimate on the model input parameters. We have thus computed this offset for every

degree between ` = 100 and ` = 1000, and each order for which the ridge was fitted, but

only for 51 values of m spanning the [−`,+`] range. We used a polynomial fit in m/` to

re-sample the offset at each m.

An estimate of the mode frequency is computed by subtracting from the measured ridge

frequency the ridge to mode frequency offset:

νn,`,m = ν̃n,`,m −∆ν
n,`,m (35)

where ν̃ is the ridge frequency and ∆ν the ridge to mode offset:

∆ν
n,`,m = ν̃Mn,`,m − νMn,`,m (36)
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Fig. 10.— Comparison of the ridge to mode frequency offset, produced by different models,

in the same format as Figs. 7 to 9. The effect of using different leakage matrix coefficients

(see text for description) is illustrated, using two different and independent implementations

(black versus colors), including the actual mean value of Bo (in red and green), as well as

including an axisymmetric instrumental PSF (in blue).

νM being the mode frequency and ν̃M the resulting ridge frequency in our model. The fre-

quency multiplets, νn,`,m, are then reduced to singlets, νn,`, by performing the usual Clebsch-

Gordan coefficients expansion in m.

The uncertainty on the resulting mode frequency estimate is determined by the uncer-

tainty on the ridge estimate and the uncertainty on the correction, the latter being either

the precision of the iterative process (0.1%) or a more conservative estimate, as discussed in

the previous section (1%). These two uncertainties are presumed independent and therefore

combined in quadrature, i.e.:

σ2
νn,`,m

= σ̃2
νn,`,m

+ σ2
∆ν
n,`,m

(37)

As described in Sec. 2.1, we have some overlap between mode and ridge fitting covering

100 ≤ ` ≤ 300 for f-modes and 100 ≤ ` ≤ 200 for p-modes. Figure 11 shows how well the

estimate of the mode multiplet frequencies derived from ridge fitting match the actual mode
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frequency computed by fitting resolved modes8. The residual bias is nearly uniform, about

0.3 µHz or at the 1.67σ level. Figure 12 compares the mode singlet frequencies, derived from

ridge fitting, to the frequencies computed by fitting resolved modes9. The singlets agree at

the 0.1σ level, with no trends with degree, frequency of azimuthal order. The scatter of the

differences shows some systematic fluctuations with frequency (or order). The distribution of

the raw differences, although nearly randomly distributed, show a departure from a Gaussian

distribution in the wings (i.e., for the less frequent larger differences), that is asymmetric.

This skewness might explain why the comparison of the multiplets shows a larger bias. Note

also that the RMS of the scaled differences is 1.4, or a little larger than unity.

Figure 13 shows how well our estimates of the frequency splittings derived from corrected

ridge frequencies, once parametrized in terms of Clebsch-Gordan coefficients, match the

frequency splittings computed by fitting resolved modes. The substantial offsets present

without that correction are canceled by our correction. One is hard-pressed in these plots

to see the transition from mode fitting to ridge fitting along a given order.

Figure 14 shows how these Clebsch-Gordan coefficients change when correcting the

ridge frequencies using mode-to-ridge offsets estimated from models using different leakage

matrices. This figure, which presents the same effect than the one presented in Fig. 10,

but in terms of splitting coefficients, shows significant changes in the parametrization of the

rotational splittings, primarily at the lowest values of ν/L (shallow modes). As we stated

earlier, this results from our limited knowledge of the PSF of the MDI instrument.

4.2. Widths, Asymmetries & Amplitudes

The most sought after characteristics of solar oscillations are the mode frequencies, since

they are the most precise and best understood properties. They have allowed us to infer

interesting properties of the Sun. We also realize that the modes FWHM, asymmetry and

amplitude are useful properties to characterize, and important quantities when modeling the

near surface acoustic field. In a manner similar to the case of the frequencies, the FWHM,

amplitude and to a lesser degree the asymmetry estimated by fitting the ridges are not the

FWHM, amplitude and asymmetry of the underlying modes. With the assistance of the

ridge modeling, we devised specific methodologies to derive estimates of the mode values

from the ridge estimates.

8The resolved modes singlets used for the comparisons are the ones estimated by Korzennik (in prep.)

using a 144 day long nearly co-eval epoch.

9The methodology used by Korzennik fit all the individual singlets in a given multiplet.



27

Fig. 11.— Comparison of estimate of mode multiplet frequencies derived from ridge fitting to

actual mode frequency computed by fitting resolved modes at intermediate degrees. The top

panel shows the overlap between both methods in the `−ν plane (filled circles). The bottom

left panel shows the raw frequency differences (open circles) as a function of frequency, with

the dot dash line representing the binned raw differences. The dots on that figure correspond

to the ridge to mode frequency correction. The bottom right panel shows the scaled frequency

differences, i.e., the frequency differences divided by their respective uncertainties (open

circles) as a function of frequency, with the dot dash line representing the binned scaled

differences. A dotted line is drawn at 0, while the dotted lines are drawn at the mean and

plus or minus one RMS of the raw differences. The color corresponds to the value of the

order, n.

4.2.1. FWHM

Figure 15 compares the ridge FWHM, Γ̃, resulting from ridge fitting to the predicted

ridge width from our model, for the zonal modes. The iterative procedure produced a model

for the ridge FWHM that matches, but for the very low frequencies, the measured values.

The intrinsic mode width estimates used in the model are also shown on that figure. These



28

Fig. 12.— Comparison of estimate of mode singlet frequencies derived from ridge fitting to

actual mode frequency computed by fitting resolved modes at intermediate degrees. The

frequency differences (left panels), and the scaled differences (differences divided by their

respective uncertainties, right panels) are plotted as a function of degree, frequency, and

m/`, and as a histogram (top to bottom). In the top three rows the color corresponds to the

value of the degree, n, while the black lines represent binned values with the RMS within each

bin shown as error bars. These differences show no trend with degree, frequency or relative

azimuthal order, but for the scatter. The red curves in the histograms are the Gaussians

corresponding to the mean and standard deviation of the distributions (indicated by the

vertical dotted lines). Note the excess and skewness in the wings of the actual distribution.

are, for a substantial fraction of modes, a lot smaller than the ridge widths. In fact, the

uncertainty on the fitted ridge width becomes, in some cases, larger than the mode width
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Fig. 13.— Left panels: comparison of estimates of mode frequencies splittings, parametrized

as Clebsch-Gordan coefficients, plotted as a function of the ratio ν/L, a proxy for the mode

inner turning point, derived from ridge fitting after correcting for the ridge to mode offset

(small dots) to frequency splitting coefficients computed by fitting resolved modes (large

dots). The black dots are the frequency splitting coefficients computed from uncorrected

ridge frequencies. The corrected splittings match the estimates derived from fitting resolved

modes. Right panels: same Clebsch-Gordan coefficients computed by fitting resolved modes,

only (same large dots). The color corresponds to the value of the order, n. Top to bottom

panels correspond to different odd coefficients.
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Fig. 14.— Comparison of estimates of mode frequencies splittings, parametrized as Clebsch-

Gordan coefficients, plotted as a function of the ratio ν/L, and derived from ridge fitting

after correcting for the ridge to mode offset, using ridge-to-mode offsets computed for the

same four different models presented in Fig. 10. The bottom panels show the differences

with respect to the reference model, and the coefficients error bars (not shown for each value

for clarity). Left to right panels correspond to different odd coefficients. The changes are,

for the shallow modes, significantly larger than their uncertainties.

estimate itself, especially at the low degree end of the low order ridges. For these modes,

recovering the intrinsic mode width from ridge fitting is poorly constrained and in some cases

too poorly constrained to derive a meaningful estimate.

Figure 16 also compares the measured ridge widths to the model predictions, but as a

function of the ratio m/`, and for a selection of multiplets. This figure illustrates how well

our model reproduces the variation of the ridge width with the azimuthal order, although

the mode width in the model is constant with m.

The zonal ridge FWHM is by no means the mode FWHM. Its value reflects the mode



31

Fig. 15.— Top panels: measured ridge FWHM (black dots) as a function of frequency

or spherical harmonic degree (left and right panels, respectively), compared to our best

model for the ridge FWHM (colored circles), derived from an optimized model for mode

FWHM estimates (colored dots), for m = 0. Note how, for a substantial fraction of modes,

the resulting ridge FWHM is much larger than the mode FWHM. The small black dots

correspond to cases where the 3-σ uncertainty on the ridge width is larger than the mode

width estimates. The horizontal line corresponds to WN,T , the resolution of the Nth order

sine multi-taper used as spectral estimator. Bottom panels: ratio of model to measured ridge

FWHMs, indicating how well our predicted ridge FWHMs agree with the observed ones, but

for some residual disagreement at the lowest frequencies, where the mode FWHM is more

than an order of magnitude smaller then the resulting ridge FWHM. The different colors

correspond to the order, n.

FWHM, the spectral resolution, and as a result of the mode blending, the slope of the ridge

with respect to the degree (i.e., ∂ν
∂`

), since it is that slope that sets the separation in frequency

of the leaks that contribute to the ridge. We devised a simple two step widening model to

estimate the mode width from the ridge width. It is based on the Gaussian convolution
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Fig. 16.— Comparison of ridge FWHM for a selection of multiplets, as a function of the ratio

m/`. The dots correspond to individual ridge width measurements, and the black curves

the corresponding binned values. The red curves correspond to our best model of the ridge

width, as evaluated at 51 equispaced m values. In most cases, our model reproduces rather

well the variation of ridge width with the azimuthal order, m, although the input mode

width of the model is constant with m.

analogy: the convolution of Gaussian by a Gaussian is also a Gaussian, whose width is the

square root of the sum of the square of the convolved Gaussian widths. So by analogy,

we relate the width of the ridge to the width of the mode using the following simple and

convenient model:

Γ̃2
n,` = (ΓEn,`)

2
+W2

n,` (38)

where ΓEn,` is the effective mode width (as defined in Eq. 8) and W is a mode to ridge

widening term, that we estimate from our modeling procedure. To account for the ridge

fitting uncertainty, we rewrite Eq. 38 as:

(Γ̃n,` ± σ̃n,`)2 = (ΓEn,` ± σn,`)2 +W2
n,` (39)
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The mode to ridge widening term, W , is estimated from the model

W2
n,` = (Γ̃Mn,`)

2 − (ΓE,Mn,` )2 (40)

where ΓE,M is the input model’s effective mode width, i.e., the mode width widened by the

spectral resolution, and Γ̃M the model’s resulting ridge width.

This can be rewritten as (after dropping the n, ` subscripts):

Γ̃2 + σ̃2 + 2 Γ̃ σ̃ = (ΓE)2 + σ2 + 2 ΓE σ +W2 (41)

Γ̃2 + σ̃2 − 2 Γ̃ σ̃ = (ΓE)2 + σ2 − 2 ΓE σ +W2 (42)

and simple arithmetic leads to the following two equations:

Γ̃ σ̃ = ΓE σ (43)

Γ̃2 + σ̃2 = (ΓE)2 + σ2 +W2 (44)

from which we derive ΓE and σ as follows:

σ = σ̃
Γ̃

ΓE
(45)

ΓE =

√
Γ̃2 −W2 + g σ̃2 (46)

where

g = 1− (
Γ̃

ΓE
)2 (47)

This correction factor, g, depends on ΓE the variable we solve for, but can be re-evaluated

iteratively, starting by setting g = 0, to solve Eq. 46. Only 3 to 4 iterations are needed to

reach a 10−6 precision.

Evaluating of ΓE becomes poorly constrained whenW2 is commensurable with Γ̃2+g σ̃2,

since the result of their subtraction must to be a positive quantity. But since ΓE must be

larger than the spectral resolution, WN,T , we can force ΓE, when derived from Eq. 46, to

always be at least WN,T .

An estimate of the mode FWHM is then derived from the effective width by solving

Eq. 8, hence

Γ =
√

ΓE2 −W 2
N,T (48)

Results of this equation are guaranteed to be greater or equal to zero if Γ̃E is set to always

be at least WN,T . But estimates of Γ much smaller than WN,T , derived from ΓE according

to Eq. 48, are in practice meaningless. To alleviate this, we introduce a reliability threshold,
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Fig. 17.— Top panels: effective FWHM, estimated from the ridge width, using the widening

model (see description in text), as a function of frequency or degree (left and right panels,

respectively). The dots correspond to effective widths below the reliability threshold. Bot-

tom panels: mode FWHM, estimated from the effective width, using a 1/4 threshold (see

explanation in text), and their associated uncertainty, as a function of frequency or degree

(left and right panels, respectively). The dots in these panels are the mode widths used in

our model of the ridge. The color corresponds to the value of the order, n. The horizontal

lines are drawn at the respective reliability limits (see text for explanation).

fr, as to only infer Γ from ΓE when Γ ≥ WN,T fr. We used fr = 1/4, namely we derived an

estimate of Γ using Eq. 48 only when ΓE ≥ 1.0308WN,T . This means that for a given n the

mode width correction scheme cannot always be extended to the lowest fitted degrees. The

results of this correction scheme for the effective width and the mode width are plotted for

zonal modes in Fig. 17.
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4.2.2. Asymmetry

Figure 18 shows the measured ridge asymmetry as a function of m
`

, for a selection

of multiplets (the same set as in Fig. 16). The figure shows that our model reproduces

the observed variation of the ridge asymmetry with m, although the mode asymmetry in

the model is constant with m. For the selected modes in that figure, the variation of the

asymmetry with m is large and well modeled at ` = 500 for n = 0 and n = 1. The change of

that variation with n and ` is properly modeled, but our model fails to reproduce in detail

the observed variation at all n and `, especially the asymmetry of the observed variation

with respect to m.

Figure 19 shows, for zonal modes, the ridge asymmetry as predicted by our model as well

as the measured ridge asymmetry. These two sets match, as a direct result of the iterative

process on the input values. The figure also shows that the ridge asymmetry of the zonal

modes is a good estimate of the mode asymmetry.

The comparison of the asymmetry, as measured from resolved mode fitting at low and

intermediate degrees10 shows a qualitative similarity – a similar dependence of α on ν.

The direct comparison of the asymmetry for the overlapping fitting range between high

degree and resolved modes is shown in Fig. 20. The estimates derived from ridge fitting are

systematically lower than the estimates derived from fitting resolved modes, although the

differences are mostly within the uncertainties on the ridge fitting asymmetry. The mean

difference is 0.059 ± 0.049, the mean scaled difference (difference divided by the respective

uncertainty) is 0.68± 0.64. Note that the asymmetry is a somewhat tricky parameter to fit.

It has a strong cross-talk with the local slope of the background (i.e., the local background

asymmetry). As a result, the initial guess of the asymmetry can affect the resulting fitted

value. This explains the few discontinuties seen in the model asymmetries in some panels of

Fig. 19 and the set of values clustered around zero in the bottom panel of Fig. 20 (asymmetry

estimates of resolved modes).

4.2.3. Amplitude

Figure 21 shows how our model reproduces the observed variation of the ridge amplitude

with azimuthal order, although the mode amplitude is constant with m. The dominant

variation, close to 1 + (m
`

)2, is well reproduced, but the observed values show a departure

10These are fitting results using the methodology developed by Korzennik (in prep.) and a very long time

series (12.5 year) of MDI observations.
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Fig. 18.— Comparison of ridge asymmetry, for a selection of multiplets (same as in Fig. 16),

as a function of the ratio m/`. The dots correspond to individual ridge asymmetry measure-

ments, and the black curves the corresponding binned values. The red curves correspond to

our best model of the ridge asymmetry. Our model reproduces some of the variation of ridge

asymmetry with the azimuthal order, m, although the mode asymmetry in the model is set

to be constant with m.

from the reference model that gets progressively larger at higher degrees. The model also

fails to reproduce the asymmetry of the variation of the ridge power amplitude with respect

to the azimuthal order, m.

That figure also illustrates the dependence of the observed variation of the ridge ampli-

tude with m on the leakage matrix used in the modeling. Results from using an independent

leakage matrix computation by one of us (SK) are also shown in that figure. Figure 22 shows

additional models, where by including various PSFs, we explored the dependence of the ridge

amplitude variation with m on the PSF included in the leakage matrix computation.

We computed a set of models using leakage matrices evaluated by including various

PSFs. We used the PSF profile determined by HGEOM but instead of using an axisymmetric
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Fig. 19.— Ridge asymmetry, for zonal modes only, as a function of frequency or degree,

left and right panels, respectively. The top panels show the model asymmetry: the input

mode asymmetry (black dots) and the resulting ridge asymmetry (colored dots). Our model

predicts that, for the zonal modes, the asymmetry of the ridge is essentially the mode asym-

metry. The middle panels show the measured ridge asymmetry for intermediate and high

degrees. The model asymmetry produced by our iterative process matches (by construction)

the observed ridge asymmetry. The bottom panels show the mode asymmetry as measured

from fitting resolved modes at low and intermediate degrees. It shows a qualitative similarity

– a similar dependence of α on ν – but a poor quantitative agreement. The color corresponds

to the value of the order, n.

PSF, we derived an elliptic PSF, F , with

F(x, y) = F (r) (49)

where F (r) is the PSF profile determined by HGEOM and where the mapping between r, the

radius, and the position (x, y) is a rotated ellipse:

r =

√
(
x′

a
)2 + (

y′

b
)2 (50)



38

Fig. 20.— Comparison between mode asymmetry determined from fitting resolved modes

at low and intermediate degrees (crosses and error bars with serifs) and mode asymmetry

estimated from ridge fitting at high degrees (dots), for the overlapping region (see Fig. 11).

The color corresponds to the value of the order, n. Note how, but for some f-modes and most

of the n = 1 modes, the ridge fitting estimates are systematically lower than the individual

mode fitting values, although that offset is mostly within 1 σ.

and

x′ = x cosφ− y sinφ (51)

y′ = x sinφ+ y cosφ (52)

while a = 1 − η and b = 1 + η. Figures 21 and 22 present the variation of the ridge power

amplitude with m resulting from the following 8 cases:

(a) Standard leakage matrix (computed by JS)

(b) Independent leakage matrix calculation, for Bo = 0o (computed by SK)

(c) Independent leakage matrix calculation, for Bo = −5.68o (computed by SK)

(d) As above, plus axisymmetric PSF (η = 0, φ = 0o)

(e) As (c), plus elliptical PSF η = +0.05, φ = 0o

(f) As (c), plus elliptical PSF η = −0.05, φ = 0o
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(g) As (c), plus elliptical PSF η = −0.10, φ = 0o

(h) As (c), plus elliptical PSF η = −0.10, φ = 20o

with the first two cases repeated in both figures.

While in none of these models does the amplitude variation with m match the obser-

vations, the figures illustrate how the precise variation of Ã with m at various ` is quite

sensitive to the PSF and suggest that the PSF of MDI is likely to be non-axisymmetrical.

A comparison of the zonal amplitudes is shown in Fig. 23, where we show the measured

zonal ridge power amplitude and compare it to the ridge amplitude predicted by our model.

The ridge zonal amplitudes agree rather well – by construction – since the model input mode

amplitudes were adjusted iteratively to achieve such a match. The figure also shows the ratio

between the mode amplitude and the ridge amplitude. While below ` = 300 the ridge to

mode amplitude ratio is a complex function of order and degree, at the higher degrees, that

ratio is mostly a function of `. A reasonable estimate of the mode amplitude can thus be

derived using the ratio predicted by our model.

4.3. Final Correction

The steps used to estimate mode parameters from ridge parameters are summarized as

follow. First, for all the singlets we corrected the ridge frequency, by subtracting the ridge

to mode offset determined by our model, and propagated the correction uncertainty to the

fitting uncertainty. Namely we use Eqs. 35 and 37:

νn,`,m = ν̃n,`,m −∆ν
n,`,m

σ2
νn,`,m

= σ2
ν̃n,`,m

+ σ2
∆ν
n,`,m

where ∆ν
n,`,m is defined in Eq. 36 and where σ∆ν

n,`,m
is taken to be 1% or 0.1% of ∆ν

n,`,m. The

zonal frequency for a given multiplet, νn,`, is computed as usual, by fitting Clebsh-Gordan

coefficients to the corrected singlets frequencies, νn,`,m.

For the FWHM, asymmetry and amplitude, singlets values for a given multiplet are

fitted to a polynomial in m/`. The zonal value is then estimated as the value at m = 0

of the fitted polynomial, with the uncertainty associated to the fit. The resulting zonal

estimates for the ridge FWHM, asymmetry and amplitude are then corrected to produce

zonal mode estimates.

These corrections are:

Γ2
n,` = (ΓEn,`)

2 −W 2
N,T
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= Γ̃2
n,` + g σ̃2

n,` −W2
n,` −W 2

N,T

σΓn,` = σΓ̃n,`
Γ̃n,`/Wn,`

αn,` = α̃n,` −∆α
n,`

σ2
αn,`

= σ̃2
αn,`

+ σ2
∆α
n,`,m

An,` = Ãn,`/r
A
n,`

σAn,` = σ̃rAn,`/r
A
n,`

following Eqs. 40, 46, 45 and 48, where ∆α
n,` is the small difference between ridge and mode

asymmetry predicted by the model of the ridge. The precision on the asymmetry correction,

σ∆α
n,`,m

, is negligible and thus is neglected, as the correction itself is minute. The quantity

rAn,` is the ratio between the ridge and mode amplitude in the model.

These corrections have been carried out using models computed with different leakage

matrices and different mode asymmetries. We computed various models since on the one

hand, we were unable to produce a good model of the ridge amplitude variation with m that

matches the observations, and because on the other hand our estimate of the asymmetry

based on ridge fitting does not match the estimates resulting from fitting resolved modes at

low and intermediate degrees.

We considered five leakage matrices and two asymmetry models. For the asymmetry, we

either allowed it be a bivariate polynomial of frequency and degree, f1(ν, `), and adjusted that

function iteratively to match the ridge fitting at intermediate and high degree (as described

earlier), or we fixed it to be solely a function of frequency, f2(ν), set to a polynomial that

matches the estimate of the asymmetry resulting from mode fitting at low and intermediate

degrees. As for the five leakage matrices, we considered the five cases (a), (b), (c), (d) and

(h) described in section 4.2.3.

Table 4 shows for each of these 10 cases some properties of the resulting models, namely

how the widths, amplitudes, and, asymmetries in our modeled ridges match the observations.

The widths and asymmetries agree with observations as a result of the iterative process on

the model input parameters. By contrast, the modeled asymmetries do not agree with the

observations when they are kept as the preset function of frequency, f2(ν), based on low and

intermediate degrees estimates.

Tables 5 and 6 show how well the mode frequencies estimated from ridge fitting, when

corrected using these 10 models, match the values measured by fitting resolved modes, for

that same overlap range between ridge fitting and resolved mode fitting. The tabulated

values are the average and standard deviation of the frequency differences, and the scaled

differences (∆ν/σν), after a 3σ rejection. The number of overlapping modes and the number
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Table 4: Models Properties: comparison of various models ridge FWHM, amplitude and

asymmetry to the corresponding observed values (for m = 0). The tabulated values are the

average and standard deviation of either ratios or differences.

Leakage Asymmetry

matrix type Γ̃M/Γ̃O ÃM/ÃO α̃M − α̃O

(a) f1(ν, `) 0.999 ± 0.015 1.001 ± 0.018 0.000 ± 0.010

(b) f1(ν, `) 0.999 ± 0.015 0.993 ± 0.020 0.000 ± 0.010

(c) f1(ν, `) 1.000 ± 0.015 0.999 ± 0.019 0.000 ± 0.010

(d) f1(ν, `) 1.012 ± 0.021 1.000 ± 0.731 0.000 ± 0.009

(h) f1(ν, `) 1.013 ± 0.022 1.001 ± 0.781 0.000 ± 0.009

(a) f2(ν) 0.999 ± 0.015 1.001 ± 0.018 0.049 ± 0.052

(b) f2(ν) 0.999 ± 0.015 0.992 ± 0.019 0.049 ± 0.052

(c) f2(ν) 1.000 ± 0.015 0.998 ± 0.019 0.049 ± 0.052

(d) f2(ν) 1.013 ± 0.021 0.998 ± 0.728 0.048 ± 0.052

(h) f2(ν) 1.014 ± 0.021 0.999 ± 0.778 0.048 ± 0.053

of these kept after the 3 σ rejection are also listed.

Table 5 compares singlets, while Table 6 compares multiplets. These tabulated values

are plotted in Fig. 24, where the error bars on the plot are the tabulated RMS. These

comparisons show that no model is significantly better amongst these ten when comparing

estimate of mode frequencies in the overlapping range between ridge fitting and resolved

mode fitting.

For illustration, a fraction of the resulting parameters are tabulated in the Appendix in

Tables 8 to 9, namely some singlets (n, `,m), multiplets (n, `), and corresponding Clebsh-

Gordan coefficients. The complete tables are available in digital form at

https://www.cfa.harvard.edu/∼sylvain/research/tables/HiL/.

4.4. Remaining Issues

One of the two major remaining issues is our inability to model the MDI instrument PSF.

This inability results in incorporating an inadequate leakage matrix, that in turn produces a
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Table 5: Frequency match, singlets: comparison of mode frequencies, at intermediate degree

for individual singlets (νn,`,m), determined either by fitting resolved modes or by fitting

ridges and correcting for the ridge-to-model offset estimated for various models. The mean

and RMS, after a 3σ rejection, are tabulated for raw and scaled differences, as well as the

number of overlapping modes and the number of modes kept after the 3σ rejection.

Leakage Asymmetry ∆νn,`,m
∆νn,`,m
σνn,`,m

matrix type [µHz] (N,Nk) (N,Nk)

(a) f1(ν, `) 0.098 ± 1.656 (73858, 72498) 0.135 ± 1.409 (73858, 71740)

(b) f1(ν, `) 0.094 ± 1.656 (73862, 72503) 0.130 ± 1.408 (73862, 71739)

(c) f1(ν, `) 0.093 ± 1.654 (73864, 72499) 0.131 ± 1.406 (73864, 71737)

(d) f1(ν, `) 0.118 ± 1.660 (73870, 72535) 0.151 ± 1.410 (73870, 71748)

(h) f1(ν, `) 0.118 ± 1.659 (73868, 72529) 0.151 ± 1.410 (73868, 71743)

(a) f2(ν) 0.086 ± 1.655 (73860, 72495) 0.123 ± 1.408 (73860, 71743)

(b) f2(ν) 0.083 ± 1.654 (73860, 72490) 0.119 ± 1.407 (73860, 71739)

(c) f2(ν) 0.096 ± 1.739 (65602, 64473) 0.141 ± 1.387 (65602, 63630)

(d) f2(ν) 0.108 ± 1.658 (73869, 72528) 0.143 ± 1.408 (73869, 71741)

(h) f2(ν) 0.108 ± 1.658 (73869, 72526) 0.144 ± 1.408 (73869, 71739)

Table 6: Frequency match, multiplets: comparison of mode frequencies, as in Table 5, but

for multiplets (νn,`).

Leakage Asymmetry ∆νn,`
∆νn,`
σνn,`

matrix type [µHz] (N,Nk) (N,Nk)

(a) f1(ν, `) 0.152 ± 0.543 (678, 636) 0.806 ± 2.216 (678, 649)

(b) f1(ν, `) 0.136 ± 0.543 (678, 636) 0.739 ± 2.210 (678, 649)

(c) f1(ν, `) 0.137 ± 0.537 (678, 635) 0.731 ± 2.201 (678, 649)

(d) f1(ν, `) 0.122 ± 0.571 (678, 638) 0.682 ± 2.312 (678, 651)

(h) f1(ν, `) 0.121 ± 0.573 (678, 638) 0.684 ± 2.320 (678, 651)

(a) f2(ν) 0.167 ± 0.542 (678, 636) 0.871 ± 2.215 (678, 649)

(b) f2(ν) 0.153 ± 0.542 (678, 636) 0.807 ± 2.205 (678, 649)

(c) f2(ν) 0.118 ± 0.541 (596, 560) 0.550 ± 2.087 (596, 576)

(d) f2(ν) 0.134 ± 0.568 (678, 638) 0.725 ± 2.293 (678, 651)

(h) f2(ν) 0.135 ± 0.569 (678, 638) 0.732 ± 2.296 (678, 651)
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model of the variation of the ridge amplitude with m that does not match the observations,

especially at the higher degrees. It may also explain the mismatch of the variation with m

of the ridge width and asymmetry, although at a smaller scale.

Since we have co-eval full disk observations between MDI and HMI, we should be able

to derive the MDI PSF from these data. Indeed, on the one hand, the HMI instrument

optical characteristics have been carefully measured prior to launch, while on the other hand

the higher spatial resolution of HMI will allow us to characterize precisely the PSF of the

MDI instrument even without knowing very precisely the PSF of the HMI instrument.

The other remaining issue is the mismatch between the estimates of the mode asymmetry

derived from low and intermediate degrees and from intermediate and high degrees. While

the introduction of a better PSF for the MDI instrument might slightly change the offset

between the mode and ridge asymmetry, the zonal values are unlikely to be much affected.

This mismatch is not significant, since the estimates from ridge fitting have large error bars,

but it is systematic. We speculate that the difficulty in constraining the background might

explain this systematic offset. The background term is likely not symmetric across the ridge,

but it is poorly constrained when fitting at intermediate and high degrees since there is

almost no free spectral range between the ridges. It is thus conceivable that the measured

ridge asymmetry might be contaminated by the local slope of the unconstrained background

across the ridge.

Other remaining issues are whether our model of the image distortion and its orienta-

tion (the effective P angle) are taken into account at the required precision at the spatial

decomposition step. These may be responsible at some level for the mismatch between our

models and the observations of the variation of the ridge amplitude with m.

5. Conclusions

We have successfully derived and implemented a procedure to estimate mode parameters

for high degree modes, using ridge fitting. We are able to derive not only frequencies, but

widths, asymmetries and amplitudes. For a range of degrees we have overlapping mode

determination derived from ridge fitting and from resolved mode fitting. Thus we could

quantitatively assess the precision of our method and found no residual significant differences.

Our extensive analysis of the precision of our correction scheme shows that the correction

precision is substantially better than the fitting precision, but for two caveats: one is the

residual, although not significant, discrepancy between the determination of the asymmetry

from ridge fitting and from mode fitting that prevents us from asserting that our model of
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the mode asymmetry is well constrained. The other is the contribution of the instrumental

PSF, through the leakage matrix, that for MDI we are unable to constrain from the data

and for which we do not have a valid pre flight determination.

In both cases, our inability to constrain these properties results in some potential re-

maining systematic errors in the corrected parameters. We are unable to find an objective

metric to select a best model. The PSF “problem” can, and we hope will, be solved by

analyzing co-eval data acquired by HMI and MDI.

As for implications on other data sets, the optimistic view is to expect that when

analyzing HMI data, an instrument that delivers full resolution full disk observations at all

times, the instrument PSF will be shown to be well known. Applying our methodology to

these data would allow us to confirm this. For the GONG data, we have to be realistic

and recognize that the effective PSF is likely to also be a problem, since the contribution of

the atmosphere needs to be taken into consideration, and one has to merge data from six

different instruments.
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Fig. 21.— Comparison of ridge amplitude, for a selection of multiplets (as in Figs. 16 and

18), as a function of the ratio m/`. The dots correspond to individual ridge power amplitude

measurements, and the black curves the corresponding binned values. The colored curves

correspond to different models of the ridge amplitude, resulting from different models for

the leakage matrix. The dotted line corresponds to 1 + (m
`

)2. As for the asymmetry, the

models reproduce over all the variation of ridge amplitude with the azimuthal order, while

the mode amplitude in the model is constant with m. The reference model shows the best

match with the observations and the discrepancies between the various model appear at high

degrees and high frequencies. Note also how all of the models fail to reproduce the observed

asymmetry of the ridge power amplitude.
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Fig. 22.— Comparison of scaled ridge amplitude, as a function of the ratio m/`, scaled as

in Fig. 21, for models using different leakage matrices (see text for the description of the

models). The dots correspond to individual ridge power amplitude measurements, while the

black curves are the corresponding binned values. The colored curves correspond to different

models.



47

Fig. 23.— Top panels: comparison of the ridge power amplitude, as a function of frequency

(panels on the left) or degree (panels on the right), for zonal modes. The model values (black

dots) are compared to the measured ridge amplitude (colored dots). These agree rather well

– by construction – since the model input mode amplitudes were adjusted iteratively to

achieve such a match. The color corresponds to the value of the order, n. Bottom panels:

ratio between the mode amplitude and the ridge amplitude estimated from our ridge model.
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Fig. 24.— Mean and RMS for frequency differences (left panels) and scaled differences (right

panels), between mode frequencies estimated from ridge fitting and values derived from

fitting resolved modes, after correcting for the ridge-to-mode offset using different models,

as presented in Tables 5 and 6. The top panels correspond to singlets, while the bottom

panels correspond to multiplets. The red and green curves are models with the f1(ν, `) or

f2(ν) asymmetry laws, respectively. No model is significanly better, when using this metric.
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Appendix: Tables

This appendix presents a subset of the mode characteristics resulting from ridge fitting

after correcting them according to the procedure described in this paper. We show in Table 7

a selection of singlets (n, `,m) (i.e., for 11 equispaced values of m, 3 three values of n and for

values of ` that are mutiples of 100). The blank entries correspond to cases where the fitting

failed. A selection of multiplets (n, `) is presented in Table 8, for all n and for values of `

that are mutiple of 100; and the corresponding Clebsh-Gordan first three even coefficients

in Table 9. The complete tables are available in digital form at

https://www.cfa.harvard.edu/∼sylvain/research/tables/HiL/.

Table 7:: Selected subset of singlets.

m νn,`,m σνn,`,m ∆ν
n,`,m νn,`,m σνn,`,m ∆ν

n,`,m νn,`,m σνn,`,m ∆ν
n,`,m

` = 100 n = 1 n = 8 n = 14

-100 3360.08 2.66 0.90 4665.92 0.37

-80 1463.21 0.98 3.66 3366.17 2.22 0.67 4655.25 2.70 0.16

-60 1464.67 0.66 3.27 3372.48 3.48 0.42 4651.68 4.59 -0.36

-40 3382.38 2.11 -0.82 4677.26 3.54 -0.64

-20 1486.21 1.85 3.44 3391.81 2.91 0.14 4671.52 4.06 -0.33

0 3396.76 3.36 1.04 4677.05 3.73 0.41

20 1493.28 0.05 5.03 3405.98 2.65 1.60 4689.71 3.92 1.18

40 3415.19 3.54 2.01 4696.68 3.25 1.50

60 1509.91 1.81 5.31 3421.46 3.17 1.65 4706.72 3.38 1.05

80 3429.23 2.31 1.09 4716.58 3.48 0.57

100 3438.31 3.10 0.91 4712.56 5.67 0.38

` = 200 n = 0 n = 5 n = 9

-200 1340.61 0.23 3.17 3387.44 0.37 1.32 4628.16 2.30 1.21

-160 1358.98 0.66 2.80 3409.92 0.69 0.90 4651.74 2.73 0.82

-120 1377.24 1.36 1.80 3426.47 1.66 -0.12 4671.43 1.82 -0.11

-80 3441.62 0.86 -0.82 4685.10 1.97 -0.81

-40 1412.51 0.94 2.04 3459.80 0.91 -0.14 4701.94 2.23 -0.27

0 1422.94 0.53 3.64 3475.29 0.54 1.39 4719.60 4.79 1.20

40 1440.79 1.42 5.23 3487.78 0.57 2.91 4731.66 1.99 2.68

80 1460.71 0.69 6.09 3502.31 1.73 3.66 4749.17 2.02 3.21

120 1474.25 1.32 5.72 3523.42 1.32 3.00 4767.42 2.14 2.47

160 1495.95 0.54 4.61 3540.49 1.12 1.92 4787.40 3.89 1.61

Continued on next page
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Table 7 – continued from previous page

m νn,`,m σνn,`,m ∆ν
n,`,m νn,`,m σνn,`,m ∆ν

n,`,m νn,`,m σνn,`,m ∆ν
n,`,m

200 1511.24 0.31 4.06 3556.95 0.88 1.49 4799.06 1.86 1.28

` = 300 n = 0 n = 4 n = 7

-300 1615.85 0.47 2.50 3524.09 0.26 1.31 4706.00 3.44 1.55

-240 1644.04 0.43 1.91 3551.80 0.38 0.72 4735.39 4.34 1.03

-180 1671.84 0.44 0.08 3580.30 0.76 -0.83 4763.52 3.70 -0.27

-120 1696.78 0.37 -0.58 3604.94 0.55 -1.87 4784.36 2.70 -1.29

-60 1720.06 0.35 0.61 3629.08 0.51 -0.91 4807.83 2.82 -0.56

0 1742.65 0.47 2.95 3653.42 1.44 1.38 4831.62 3.32 1.55

60 1763.32 0.52 5.28 3676.21 1.00 3.67 4855.95 3.97 3.66

120 1787.29 0.41 6.56 3696.90 0.83 4.67 4886.94 6.23 4.34

180 1813.92 0.32 6.03 3720.38 0.55 3.64 4904.75 3.31 3.29

240 1839.47 0.40 4.18 3752.99 0.39 2.13 4930.28 3.72 2.13

300 1867.36 0.50 3.36 3776.91 0.44 1.54 4957.49 4.56 1.68

` = 400 n = 0 n = 3 n = 6

-400 1839.45 0.34 2.11 3439.71 1.13 1.31 4816.28 8.92 1.96

-320 1878.15 0.25 1.27 3481.20 0.78 0.55 4872.71 5.22 1.27

-240 1914.15 0.61 -1.56 3516.83 0.59 -1.56 4891.44 9.35 -0.43

-160 1948.60 0.23 -2.11 3550.95 0.42 -2.80 4937.41 5.64 -1.75

-80 1978.15 0.33 -0.49 3581.83 0.48 -1.56 4966.79 4.67 -0.80

0 2007.35 0.28 2.55 3617.48 0.66 1.43 5010.96 7.36 1.97

80 2037.30 0.34 5.59 3644.29 0.50 4.39 5031.16 5.16 4.71

160 2069.90 0.26 7.28 3674.82 0.49 5.62 5058.36 4.26 5.53

240 2103.62 0.35 6.78 3706.99 0.53 4.34 5095.35 6.32 4.14

320 2138.66 0.41 4.10 3741.46 1.07 2.40 5122.64 6.07 2.70

400 2176.16 0.27 2.97 3779.39 0.56 1.63 5158.84 5.39 2.12

` = 500 n = 0 n = 3 n = 5

-500 2032.10 0.32 1.86 3721.59 1.21 1.40 4779.20 6.69 2.12

-400 2079.39 0.41 0.78 3776.78 1.62 0.51 4850.66 8.85 1.29

-300 2126.49 0.85 -2.80 3819.99 1.16 -1.89 4892.13 5.98 -0.83

-200 2168.71 0.37 -3.39 3864.13 1.22 -3.45 4944.70 7.41 -2.49

-100 2206.01 0.27 -1.35 3900.53 1.19 -2.04 4971.54 6.02 -1.30

0 2241.99 0.22 2.29 3936.12 1.30 1.53 5010.78 7.64 2.17

100 2280.01 0.27 5.96 3974.21 1.22 5.06 5044.81 5.69 5.63

200 2317.49 0.49 8.05 4011.97 0.86 6.30 5088.53 6.62 6.65

300 2358.19 0.72 7.48 4052.67 1.14 4.62 5121.74 7.40 4.92

Continued on next page
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Table 7 – continued from previous page

m νn,`,m σνn,`,m ∆ν
n,`,m νn,`,m σνn,`,m ∆ν

n,`,m νn,`,m σνn,`,m ∆ν
n,`,m

400 2404.15 1.22 4.11 4096.97 1.84 2.57 5168.51 5.48 3.10

500 2451.90 0.26 2.71 4145.79 0.96 1.74 5212.01 7.12 2.33

` = 600 n = 0 n = 2 n = 4

-600 2200.85 0.33 1.69 3375.48 0.59 1.45 4569.96 5.64 1.98

-480 2257.50 0.48 0.50 3434.14 0.48 0.30 4639.09 5.27 0.96

-360 2314.26 1.17 -3.44 3489.62 1.31 -2.90 4695.63 6.61 -1.64

-240 2363.97 1.75 -4.38 3541.13 0.76 -4.57 4746.18 5.60 -3.63

-120 2410.97 0.56 -2.05 3588.47 0.94 -2.68 4780.55 4.67 -2.16

0 2454.05 0.35 2.12 3627.75 0.79 1.64 4825.35 4.58 2.07

120 2498.71 0.56 6.32 3670.88 1.29 5.92 4878.69 6.53 6.28

240 2541.67 1.75 8.65 3723.76 1.30 7.58 4933.80 6.08 7.50

360 3772.76 1.00 5.73 4963.75 4.89 5.41

480 2649.34 1.08 4.04 3825.62 1.10 3.01 5028.84 4.75 3.22

600 2704.88 0.42 2.54 3881.58 0.65 1.91 5084.24 4.74 2.25

` = 700 n = 0 n = 2 n = 4

-700 2355.80 0.67 1.59 3585.34 1.18 1.52 4859.54 17.31 2.51

-560 2422.35 0.76 0.32 3655.52 1.27 0.18 4907.81 10.03 1.27

-420 2484.73 1.92 -3.75 3721.56 2.49 -3.38 4978.88 10.58 -1.82

-280 2545.93 0.68 -5.24 3780.02 2.10 -5.43 5035.02 11.13 -4.16

-140 2598.77 0.35 -2.71 3834.58 1.20 -3.33 5099.94 9.38 -2.44

0 2650.02 0.36 2.00 3886.56 1.52 1.76 5143.83 11.42 2.66

140 2700.27 0.88 6.73 3932.49 1.61 6.75 5193.52 8.96 7.67

280 2754.29 0.97 9.10 3990.67 1.69 8.46 5257.80 9.74 9.03

420 2810.04 2.09 7.60 4042.58 1.67 6.16 5299.17 11.27 6.55

560 2877.00 0.97 3.93 4114.32 1.71 3.24 5383.13 10.16 3.98

700 2941.49 0.40 2.42 4175.79 1.34 1.99 5433.74 7.97 2.79

` = 800 n = 0 n = 2 n = 3

-800 2490.31 1.00 1.55 3786.28 2.67 1.64 4455.38 5.41 2.07

-640 2570.26 1.06 0.12 3871.52 1.92 0.03 4534.01 4.57 0.51

-480 2642.63 1.79 -4.16 3947.30 2.58 -3.95 4610.64 5.26 -3.19

-320 2708.33 1.17 -6.07 4011.97 1.79 -6.36 4667.91 5.59 -5.80

-160 2769.17 0.87 -3.48 4072.83 2.29 -4.05 4739.06 6.38 -3.71

0 2830.75 0.86 1.98 4132.14 1.81 1.82 4792.00 5.11 2.17

160 2890.48 0.84 7.37 4185.19 2.18 7.71 4849.83 5.39 8.13

320 2948.68 1.21 9.67 4256.81 2.41 9.51 4918.18 5.76 9.73

Continued on next page
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Table 7 – continued from previous page

m νn,`,m σνn,`,m ∆ν
n,`,m νn,`,m σνn,`,m ∆ν

n,`,m νn,`,m σνn,`,m ∆ν
n,`,m

480 3020.75 1.53 7.62 4320.01 2.91 6.77 4986.92 5.49 6.87

640 3088.17 1.00 3.97 5065.60 6.78 3.85

800 3165.50 1.01 2.37 4464.78 1.62 2.11 5134.08 5.31 2.42

` = 900 n = 0 n = 2 n = 3

-900 2620.96 1.43 1.55 3997.98 3.27 1.81 4688.00 11.95 2.49

-720 2705.26 1.35 -0.15 4077.75 3.79 -0.12 4765.47 8.70 0.60

-540 2790.34 2.28 -4.84 4159.38 4.18 -4.60 4845.57 8.97 -3.67

-360 2862.60 1.30 -7.20 4234.49 3.13 -7.41 4913.34 11.78 -6.63

-180 2935.24 1.60 -4.34 4309.82 3.42 -4.83 5004.43 10.60 -4.24

0 3003.06 1.37 1.98 4374.78 3.11 2.01 5062.39 9.84 2.62

180 3061.50 1.52 8.21 4442.40 3.57 8.85 5125.96 10.22 9.54

360 3128.93 1.86 10.55 4506.11 3.86 10.77 5187.44 8.42 11.31

540 3203.81 2.29 7.95 4582.98 3.89 7.60 5274.33 9.25 8.04

720 3291.54 1.53 4.15 4661.43 3.29 3.99 5351.52 9.20 4.55

900 3372.62 1.52 2.38 4749.11 3.30 2.27 5439.97 8.28 2.84

` = 1000 n = 0 n = 1 n = 2

-1000 3454.34 2.11 1.75 4183.54 4.48 2.04

-800 2837.09 2.54 -0.33 3555.08 4.40 -0.61 4280.47 4.26 -0.22

-600 2921.95 3.30 -5.48 3649.84 3.14 -6.06 4386.49 4.47 -5.31

-400 3006.85 2.90 -8.26 3730.87 2.60 -8.87 4454.42 4.30 -8.52

-200 3083.96 2.10 -5.36 3804.57 2.11 -5.77 4538.02 4.35 -5.69

0 3156.62 3.21 2.07 3879.78 2.21 2.03 4613.72 4.22 2.24

200 3225.57 2.16 9.34 3951.35 3.21 9.66 4683.41 5.59 9.99

400 3308.10 2.25 11.68 4030.11 2.58 12.08 4758.74 5.90 12.31

600 3387.98 3.00 8.61 4111.34 2.87 8.67 4841.74 4.19 8.74

800 3483.79 2.44 4.59 4198.87 2.31 4.45

1000 3574.75 2.12 2.50 4296.71 1.80 2.36 5029.08 4.80 2.49
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Table 8:: Selected subset of multiplets.

n ` νn,` σνn,` ∆ν
n,` Γ̃n,` α̃n,` Ãn,` Γn,` σΓn,` αn,` σαn,` An,` σAn,`

1 100 1490.27 2.03 4.21 15.52 -0.086 5.67e-04 ≤ 1.96 2.23 -0.095 0.068 7.66e-03 7.26e-04

2 100 1845.44 0.33 3.37 14.74 -0.132 4.78e-03 ≤ 1.96 0.80 -0.134 0.023 4.89e-02 1.59e-03

3 100 2146.16 0.39 3.40 17.93 -0.100 1.85e-02 ≤ 1.96 0.97 -0.107 0.022 1.47e-01 4.14e-03

4 100 2423.24 0.37 2.25 19.84 -0.026 5.48e-02 ≤ 1.96 0.98 -0.039 0.018 4.11e-01 9.46e-03

5 100 2678.75 0.32 2.16 21.52 0.004 1.26e-01 ≤ 1.96 1.35 -0.019 0.015 1.11e+00 2.75e-02

6 100 2928.89 0.43 1.80 23.76 -0.005 2.28e-01 ≤ 1.96 1.58 -0.031 0.020 2.13e+00 4.38e-02

7 100 3167.81 0.41 1.27 25.77 -0.031 2.50e-01 ≤ 1.96 1.70 -0.048 0.017 2.27e+00 4.53e-02

8 100 3398.58 0.29 1.04 28.70 -0.041 1.40e-01 ≤ 1.96 1.69 -0.050 0.011 1.18e+00 2.44e-02

9 100 3623.47 0.29 0.80 31.36 -0.021 6.20e-02 ≤ 1.96 1.93 -0.025 0.010 4.58e-01 8.19e-03

10 100 3845.15 0.32 0.67 36.51 -0.038 2.69e-02 12.68 1.86 -0.037 0.010 1.63e-01 2.80e-03

11 100 4061.31 0.38 0.53 41.39 -0.025 1.35e-02 17.45 2.32 -0.025 0.011 6.66e-02 1.00e-03

12 100 4272.21 0.47 0.48 50.24 0.013 7.06e-03 29.43 2.55 0.012 0.014 2.96e-02 4.81e-04

13 100 4479.18 0.55 0.49 58.60 0.096 3.85e-03 38.57 3.51 0.092 0.019 1.39e-02 2.41e-04

14 100 4667.48 1.04 0.41 68.51 0.134 2.31e-03 48.72 5.21 0.130 0.034 7.35e-03 2.10e-04

0 200 1429.52 0.61 3.64 9.67 -0.077 5.12e-04 ≤ 1.96 0.42 -0.085 0.044 3.82e-03 1.61e-04

1 200 1967.68 0.09 2.43 10.01 -0.119 1.32e-02 ≤ 1.96 0.15 -0.127 0.008 7.28e-02 1.41e-03

2 200 2392.48 0.11 2.20 12.94 -0.080 7.03e-02 4.94 0.21 -0.085 0.007 3.77e-01 6.41e-03

3 200 2765.51 0.13 1.91 13.77 -0.040 2.40e-01 4.05 0.25 -0.042 0.008 1.36e+00 2.11e-02

4 200 3131.93 0.13 1.67 15.47 -0.039 3.85e-01 4.54 0.32 -0.040 0.008 2.18e+00 3.46e-02

5 200 3474.16 0.14 1.39 19.42 -0.054 1.74e-01 8.43 0.40 -0.057 0.007 8.01e-01 1.24e-02

6 200 3804.14 0.18 1.18 26.00 -0.077 5.01e-02 15.23 0.54 -0.081 0.006 1.73e-01 2.56e-03

7 200 4119.44 0.21 1.12 39.31 -0.080 1.39e-02 30.45 0.63 -0.083 0.005 3.86e-02 4.47e-04

8 200 4423.91 0.23 1.16 52.94 -0.077 5.12e-03 44.71 1.11 -0.079 0.005 1.30e-02 1.29e-04

9 200 4717.78 0.34 1.20 73.88 -0.072 2.11e-03 66.73 2.01 -0.073 0.008 5.13e-03 5.38e-05

Continued on next page
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Table 8 – continued from previous page

n ` νn,` σνn,` ∆ν
n,` Γ̃n,` α̃n,` Ãn,` Γn,` σΓn,` αn,` σαn,` An,` σAn,`

0 300 1742.04 0.06 2.95 8.42 -0.099 3.27e-03 ≤ 1.96 0.10 -0.102 0.008 1.38e-02 2.46e-04

1 300 2286.96 0.07 2.02 11.14 -0.096 3.84e-02 5.80 0.13 -0.102 0.005 1.16e-01 1.74e-03

2 300 2779.88 0.08 1.71 13.43 -0.067 1.77e-01 7.91 0.19 -0.072 0.005 5.44e-01 7.96e-03

3 300 3234.66 0.10 1.58 14.97 -0.046 2.70e-01 7.73 0.24 -0.050 0.005 9.16e-01 1.23e-02

4 300 3652.31 0.11 1.38 21.80 -0.075 8.39e-02 15.28 0.32 -0.078 0.005 2.35e-01 2.92e-03

5 300 4062.44 0.15 1.36 39.85 -0.083 1.59e-02 35.14 0.42 -0.085 0.004 3.85e-02 3.76e-04

6 300 4456.84 0.21 1.46 64.60 -0.088 4.08e-03 60.84 0.81 -0.089 0.004 9.50e-03 7.66e-05

7 300 4834.19 0.33 1.55 101.35 -0.077 1.32e-03 98.18 1.75 -0.078 0.006 3.03e-03 2.20e-05

0 400 2008.28 0.05 2.55 9.18 -0.119 8.54e-03 3.54 0.09 -0.120 0.005 2.31e-02 3.25e-04

1 400 2556.36 0.08 1.91 14.12 -0.105 5.37e-02 10.15 0.16 -0.108 0.004 1.27e-01 1.42e-03

2 400 3088.70 0.08 1.59 16.25 -0.054 1.60e-01 12.11 0.19 -0.057 0.004 4.02e-01 4.55e-03

3 400 3613.61 0.11 1.43 25.32 -0.066 6.71e-02 21.80 0.26 -0.068 0.004 1.64e-01 1.80e-03

4 400 4105.68 0.14 1.52 47.15 -0.086 1.07e-02 44.14 0.40 -0.087 0.003 2.49e-02 2.06e-04

5 400 4561.20 0.23 1.67 84.02 -0.069 2.29e-03 81.82 0.78 -0.070 0.004 5.27e-03 3.53e-05

6 400 5000.85 0.41 1.97 147.63 -0.026 6.65e-04 145.72 1.86 -0.027 0.007 1.52e-03 8.75e-06

0 500 2242.80 0.07 2.29 11.41 -0.134 1.23e-02 7.03 0.13 -0.133 0.004 2.63e-02 2.75e-04

1 500 2801.33 0.09 1.87 19.34 -0.083 4.81e-02 16.38 0.19 -0.085 0.004 1.06e-01 1.01e-03

2 500 3367.17 0.09 1.59 23.55 -0.058 6.97e-02 20.68 0.21 -0.059 0.003 1.64e-01 1.55e-03

3 500 3936.25 0.14 1.53 44.75 -0.071 1.39e-02 42.71 0.32 -0.072 0.003 3.25e-02 2.55e-04

4 500 4493.43 0.19 1.72 88.71 -0.075 2.13e-03 87.27 0.60 -0.076 0.003 4.97e-03 2.78e-05

5 500 5009.82 0.40 2.17 162.85 -0.035 4.86e-04 161.52 1.57 -0.035 0.006 1.14e-03 5.18e-06

0 600 2454.82 0.08 2.12 16.35 -0.140 1.15e-02 13.26 0.18 -0.139 0.004 2.29e-02 2.13e-04

Continued on next page
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n ` νn,` σνn,` ∆ν
n,` Γ̃n,` α̃n,` Ãn,` Γn,` σΓn,` αn,` σαn,` An,` σAn,`

1 600 3031.40 0.09 1.85 25.17 -0.077 3.36e-02 22.94 0.21 -0.078 0.003 7.52e-02 6.17e-04

2 600 3630.70 0.11 1.64 34.98 -0.069 2.28e-02 32.93 0.25 -0.070 0.003 5.43e-02 4.18e-04

3 600 4235.20 0.16 1.69 72.06 -0.077 3.45e-03 70.76 0.39 -0.077 0.002 8.35e-03 4.99e-05

4 600 4832.45 0.31 2.07 149.45 -0.033 5.67e-04 148.53 0.90 -0.033 0.005 1.39e-03 5.88e-06

0 700 2649.22 0.09 2.00 24.14 -0.136 8.61e-03 22.02 0.20 -0.136 0.003 1.79e-02 1.43e-04

1 700 3251.42 0.10 1.87 34.92 -0.080 1.69e-02 33.19 0.23 -0.080 0.003 4.04e-02 2.76e-04

2 700 3884.80 0.12 1.76 51.83 -0.076 6.54e-03 50.47 0.30 -0.076 0.002 1.66e-02 1.08e-04

3 700 4520.80 0.19 1.95 107.58 -0.062 9.60e-04 106.75 0.51 -0.062 0.002 2.50e-03 1.20e-05

4 700 5145.12 0.48 2.66 229.68 0.041 1.76e-04 229.02 1.67 0.041 0.005 4.64e-04 1.72e-06

0 800 2829.18 0.10 1.98 36.11 -0.128 5.28e-03 34.69 0.24 -0.128 0.003 1.22e-02 8.65e-05

1 800 3464.52 0.11 1.87 46.83 -0.080 7.05e-03 45.49 0.26 -0.080 0.002 1.87e-02 1.19e-04

2 800 4131.67 0.15 1.82 74.24 -0.068 1.92e-03 73.14 0.33 -0.068 0.002 5.38e-03 2.91e-05

3 800 4795.55 0.26 2.17 152.07 -0.019 2.97e-04 151.31 0.69 -0.019 0.003 8.51e-04 3.28e-06

0 900 2997.09 0.12 1.98 52.14 -0.129 2.84e-03 51.07 0.28 -0.129 0.002 7.60e-03 4.52e-05

1 900 3672.76 0.13 1.95 61.91 -0.087 2.62e-03 60.89 0.30 -0.087 0.002 7.95e-03 4.78e-05

2 900 4373.29 0.17 2.01 102.63 -0.060 5.84e-04 101.71 0.41 -0.061 0.002 1.86e-03 9.06e-06

3 900 5062.73 0.39 2.62 221.50 0.022 9.63e-05 220.86 1.15 0.022 0.004 3.14e-04 1.10e-06

0 1000 3154.77 0.13 2.07 75.30 -0.138 1.35e-03 74.84 0.36 -0.138 0.002 4.31e-03 2.47e-05

1 1000 3877.95 0.13 2.03 81.52 -0.091 9.07e-04 80.89 0.34 -0.091 0.002 3.26e-03 1.85e-05

2 1000 4610.80 0.20 2.24 135.00 -0.040 1.83e-04 134.58 0.53 -0.040 0.002 6.88e-04 3.04e-06
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Table 9:: Selected subset of Clebsch-Gordan coefficients.

n ` νn,` cgn,`(1) cgn,`(3) cgn,`(5) σcgn,`(1) σcgn,`(3) σcgn,`(5)

1 100 1490.3 359.10 9.53 -5.98 11.17 9.33 7.30

2 100 1845.4 361.01 -4.29 1.75 2.33 1.61 1.19

3 100 2146.2 357.59 -7.02 -0.07 2.48 1.74 1.32

4 100 2423.2 361.39 -4.51 -1.67 2.46 1.65 1.29

5 100 2678.7 357.92 -10.23 -3.23 2.06 1.40 1.09

6 100 2928.9 360.87 -5.56 -0.47 2.75 1.83 1.51

7 100 3167.8 357.69 -11.04 -0.33 2.70 1.71 1.41

8 100 3398.6 357.18 -9.05 -1.71 1.85 1.25 0.98

9 100 3623.5 360.31 -10.61 -2.20 1.85 1.25 1.02

10 100 3845.1 355.93 -9.65 0.01 2.00 1.36 1.10

11 100 4061.3 359.91 -7.78 -0.17 2.46 1.66 1.31

12 100 4272.2 359.63 -9.27 -1.66 2.97 2.07 1.63

13 100 4479.2 358.03 -6.85 -3.21 3.62 2.41 1.86

14 100 4667.5 370.72 -15.02 -12.33 10.51 5.29 1.53

0 200 1429.5 348.78 -1.59 -0.11 1.94 1.31 1.17

1 200 1967.7 356.67 -8.22 -0.86 0.29 0.18 0.15

2 200 2392.5 359.23 -7.53 -0.86 0.35 0.22 0.18

3 200 2765.5 358.37 -7.23 -0.37 0.40 0.27 0.22

4 200 3131.9 360.23 -7.62 -0.66 0.42 0.28 0.23

5 200 3474.2 360.72 -7.16 -0.38 0.45 0.30 0.24

6 200 3804.1 359.57 -7.94 -0.19 0.56 0.39 0.30

7 200 4119.4 361.26 -8.11 -0.70 0.66 0.43 0.34

8 200 4423.9 360.44 -7.15 -0.08 0.75 0.49 0.38

9 200 4717.8 362.64 -6.11 -1.17 1.08 0.73 0.57

0 300 1742.0 356.22 -7.48 -0.70 0.14 0.09 0.07

1 300 2287.0 356.46 -7.73 -0.52 0.16 0.10 0.08

2 300 2779.9 356.75 -7.88 -0.73 0.19 0.12 0.10

3 300 3234.7 357.20 -8.02 -0.63 0.21 0.14 0.11

4 300 3652.3 357.63 -7.68 -0.78 0.25 0.16 0.13

5 300 4062.4 358.19 -7.93 -0.83 0.32 0.21 0.17

6 300 4456.8 359.71 -7.34 -0.38 0.46 0.31 0.25

Continued on next page
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Table 9 – continued from previous page

n ` νn,` cgn,`(1) cgn,`(3) cgn,`(5) σcgn,`(1) σcgn,`(3) σcgn,`(5)

7 300 4834.2 361.43 -5.55 -0.58 0.71 0.48 0.37

0 400 2008.3 356.08 -7.42 -0.60 0.09 0.06 0.04

1 400 2556.4 355.37 -7.78 -0.49 0.13 0.08 0.07

2 400 3088.7 355.87 -8.15 -0.52 0.14 0.09 0.07

3 400 3613.6 356.42 -8.20 -0.39 0.18 0.11 0.09

4 400 4105.7 357.62 -8.18 -0.77 0.23 0.16 0.12

5 400 4561.2 359.08 -7.17 -0.48 0.37 0.25 0.20

6 400 5000.9 360.31 -5.78 -0.30 0.65 0.44 0.35

0 500 2242.8 355.21 -7.50 -0.43 0.10 0.05 0.04

1 500 2801.3 355.03 -8.00 -0.47 0.12 0.07 0.06

2 500 3367.2 355.24 -8.33 -0.53 0.13 0.08 0.06

3 500 3936.3 355.95 -7.98 -0.42 0.19 0.12 0.10

4 500 4493.4 356.84 -8.23 -0.72 0.25 0.17 0.13

5 500 5009.8 357.52 -7.45 -0.61 0.51 0.34 0.28

0 600 2454.8 354.61 -7.77 -0.46 0.10 0.06 0.04

1 600 3031.4 354.45 -8.11 -0.42 0.11 0.07 0.05

2 600 3630.7 355.22 -8.01 -0.51 0.12 0.08 0.06

3 600 4235.2 356.39 -7.88 -0.59 0.17 0.11 0.09

4 600 4832.5 357.64 -7.47 -0.75 0.34 0.22 0.18

0 700 2649.2 354.23 -7.89 -0.45 0.10 0.06 0.04

1 700 3251.4 354.49 -8.10 -0.55 0.10 0.06 0.05

2 700 3884.8 355.17 -8.16 -0.49 0.11 0.07 0.06

3 700 4520.8 356.03 -7.93 -0.74 0.17 0.11 0.09

4 700 5145.1 356.71 -7.23 -0.50 0.44 0.29 0.24

0 800 2829.2 353.78 -8.12 -0.44 0.09 0.06 0.04

1 800 3464.5 354.34 -8.15 -0.48 0.09 0.06 0.05

2 800 4131.7 355.22 -8.07 -0.50 0.12 0.08 0.06

3 800 4795.6 356.77 -7.71 -0.55 0.21 0.14 0.11

0 900 2997.1 353.58 -8.20 -0.43 0.09 0.06 0.04

Continued on next page
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Table 9 – continued from previous page

n ` νn,` cgn,`(1) cgn,`(3) cgn,`(5) σcgn,`(1) σcgn,`(3) σcgn,`(5)

1 900 3672.8 354.33 -8.27 -0.56 0.09 0.06 0.05

2 900 4373.3 355.42 -8.29 -0.69 0.12 0.08 0.06

3 900 5062.7 357.41 -7.60 -0.72 0.28 0.19 0.15

0 1000 3154.8 353.46 -8.29 -0.57 0.08 0.06 0.04

1 1000 3878.0 354.16 -8.38 -0.55 0.09 0.06 0.05

2 1000 4610.8 354.82 -8.44 -0.71 0.13 0.09 0.07


