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Solar oscillations provide a unique tool to investigate the internal structure and dynamics

of the Sun. While accurate measurements of the solar acoustic spectrum characteristics

have been performed for low- and intermediate-degree modes, only a limited set of short

time baseline measurements for high-degree modes has been available (ℓ > 120). The

purpose of this work is to provide an accurate and more reliable set of measurements for

these high-degree modes.

High spatial resolution (2.2 arc sec per pixel) full-disk dopplergrams of the solar surface

have been acquired at the Mt Wilson 60-foot solar tower during the summer of 1988,

using a doppler analyzer based on the sodium magneto-optical filter. Twenty consecutive

days of observations have been reduced to spherical harmonic coefficient time series, for

degrees ℓ ≤ 600. The time series were then Fourier transformed in order to estimate the

corresponding power spectra.

From these power spectra, frequency splittings have been estimated for degree 20 ≤ ℓ ≤

600. At low and intermediate degree (ℓ ≤ 120), individual modes could be isolated, and
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hence reliable tesseral measurements have been obtained. At high-degree (ℓ > 120), the

presence of mode blending introduced systematic errors in the tesseral frequency split-

ting determination. The nature of these systematics has been carefully studied, but our

simulations were unable to reproduce in detail the observed systematics, and therefore,

an ad hoc procedure was developed to correct for them. Alternatively, sectoral frequency

splittings, shown to be less sensitive to mode blending systematics, have provided a more

reliable estimate of the frequency splitting for these high-degree modes.

From collapsed <m = 0> spectra modal frequencies, amplitudes and lifetimes have been

estimated for 20 ≤ ℓ ≤ 600. The required corrections for mode blending, point spread

function attenuation, and finite observing run have been applied. These new measurements

are compared with previous determinations and theoretical predictions.

Finally, based on the frequency splittings obtained from the present study, as well as

contemporaneous independent measurements, we have inferred the internal rotation rate

as a function of depth in the equatorial regions, and discuss some of the implications of

such a profile in relation to solar dynamo, global circulation and evolutionary models of

rotating stars.
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Chapter 1

Introduction

Since the early observation, more than three decades ago, of a peculiar oscillatory behavior

at the solar surface, that is now known as the 5-minute oscillation, helioseismology has

emerged today as a powerful diagnostic tool to probe and understand the solar structure

and its dynamics, and beyond the Sun, some of the key aspects of astrophysics.

The Sun, our nearest star, has always provided astrophysicists with the unique opportunity

of testing or challenging our understanding of stellar structure and evolution and, by

extension, our understanding of galaxies and the universe. Yet, most of this knowledge has

been gained from the study of the visible part of the Sun, namely the surface and the outer

atmosphere. On the basis of these observations, a wide range of conclusions have been

drawn on the solar interior, whose predicted structure is governed by our understanding

of nuclear energy generation and nucleosynthesis in the core, the composition, equation

of state and energy transport throughout the interior. This structure depends also on the

transport of energy in the envelope by convection, and its dynamics hold the key to our

the understanding of large-scale flow patterns, the solar dynamo, and ultimately the solar

cycle.
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While the observation of the solar neutrino flux has provided a new diagnostic tool for the

deep solar interior structure, with a particular sensitivity to the nuclear energy generation

in the core, the analysis of the solar acoustic spectrum provides a unique access to the study

of a wide variety of properties of the Sun’s interior. Indeed, the solar interior stratification

creates an acoustic cavity whose depth and latitudinal extent varies with frequency and

horizontal wavenumber. Moreover, the solar acoustic spectrum is rich with perhaps more

than ten million modes excited, and the solar cavity has overall a high quality factor

within which some modes are observed to have lifetimes exceeding one month. Since

each individual mode, i.e. each resonant frequency, is constrained by the structural and

dynamical properties that prevail throughout the extent of its resonant cavity, specific

information on the Sun’s internal properties can be extracted from the analysis of the

solar acoustic spectrum.

Solar oscillations is today a mature subject, described in detail in any modern solar text-

book (see for instance Noyes, 1982; Brown et al., 1986; Zirin, 1988 or Unno et al., 1989).

The “embarrassing extent” (Deubner, 1975) to which early observations matched theo-

retical predictions has since been replaced, due to the exceptional accuracy of modern

observations, with puzzling discrepancies that, like the neutrino problem, indicate the in-

complete nature of our understanding of the physical processes and conditions that govern

the solar structure.

In the following sections, we briefly review some of the key points of solar oscillation theory

followed by the precise context of the present study. We present the motivations behind

our attempt to extend the accurate measurement of the properties of the solar acoustic

spectrum to high-degree modes. Finally, let us point out that we have limited ourselves

to the study of p-modes, and f-modes (i.e. modes whose restoring force is dominated by

pressure, and the fundamental modes), since the small surface amplitude and the long

period of g-modes (i.e. the modes whose restoring force is dominated by gravity) place
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them most probably beyond the reach of the doppler analyser used for the present study.

1.1 Background

The first detection of an oscillatory pattern in the Sun’s surface velocity field was made

as early as 1960 (Leighton et al., 1962). For over a decade, these quasi-periodic variations

seen in high spatial resolution Doppler observations of small portions of the solar disk,

were thought to be a localized resonant response of the solar atmosphere to local excitation

from convection cells. In fact, these observations showed bursts of quasi-periodic velocity

signals, of some 1000 m s−1 in amplitude and with a period around 5 minutes that would

last for some 6 or 7 periods, and showed a spatial coherence length of about 30 Mm.

The existence of an acoustic resonant cavity below the solar surface was first suggested

by Ulrich (1970) and demonstrated a few years later by Deubner (1975) and Rhodes et al.

(1977). The unequivocal demonstration of the global nature of the 5-minute oscillations as

acoustic resonant modes came from the power distribution of the observed velocity signal

as a function of frequency and spatial wavenumber. Actually, from the dispersion relation

of the acoustic spectrum, which is the relation between the temporal frequency and the

spatial wavenumber that guarantees radial propagation of the wave, the precise location

of the power distribution as a function of frequency and spatial wavenumber could be

predicted on the basis of a model of the solar interior stratification. This is illustrated

in Figure 1.1, where the power distribution as a function of spherical harmonic degree, ℓ,

(corresponding to the horizontal wavenumber) and frequency, ν, resulting from the present

study, is presented for 20 ≤ ℓ ≤ 600 and 1 ≤ ν ≤ 8 mHz. The remarkable agreement

between the predicted and observed power distribution of very early measurements in a

totally new aspect of solar physics can be viewed in retrospect as a clear indication of the

strength of helioseismology as a diagnostic tool. The apparent quasi-periodic behavior
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of the localized oscillatory pattern and its apparent short spatial coherence length result

from the beating of some 107 modes simultaneously excited, each at different frequency

and spatial wavenumber, and of some 20–50 cm s−1 in amplitude.

The solar acoustic oscillations can be characterized as small perturbations of pressure and

density about the equilibrium. Since the Sun’s oblateness is small, the equilibrium model

can be considered as spherically symmetric and the angular dependence of the perturbation

decomposed as a sum of spherical harmonic functions, which form a complete basis of

orthonormal functions on the sphere. The angular dependence of the wave function will

be characterized by the spherical harmonic degree ℓ and azimuthal order m (|m| ≤ ℓ),

while its radial dependence will be characterized by the number of radial overtone, or the

radial order, n of the wave.

From a ray path point of view, a wave of a given horizontal wavenumber, kh, and frequency,

ν, will be reflected at the surface by the very steep density gradient present there. The

downward wave will then be progressively refracted since the deeper portion of the wave

front will propagate faster as the sound speed increases with depth in the solar interior,

as schematically illustrated in Figure 1.2. At some given depth the wave will be traveling

horizontally, and is thus turned around or reflected and will propagate back towards the

surface. This reflection will occur at a depth where the wave’s horizontal velocity 2πν/kh

equals the local sound speed, c. Hence, for a larger horizontal wavenumber (or larger

spherical harmonic degree ℓ, since kh =
√

ℓ(ℓ+ 1)/R) but a similar frequency, reflection

will occur at lower local sound speed, hence at a shallower depth. Indeed, since wave

fronts are proportionally more tilted from the horizontal for larger wavenumber, they

will be refracted faster and penetrate less deeply in the Sun’s interior, as illustrated in

Figure 1.2.

Resonance (i.e. standing waves) will only occur if there is an integral relation between

the wave’s travel time along the ray path between each reflection and the wave frequency.
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Figure 1.1: Power density distribution, in scaled logarithmic units, as a function of degree and
frequency, of the solar acoustic spectrum for 20 ≤ ℓ ≤ 600 and 1 ≤ ν ≤ 8 mHz. Namely, low
frequency resolution < m = 0 > average power spectrum corresponding to 20 days of full-disk
doppler observations. Note that the f-mode is clearly visible in the upper left corner of the figure,
while power ridges at lower degree can be seen up to the Nyquist frequency (8.3 mHz). (In order to
reduce the dynamical range required to display this figure, the logarithm of the power density was
divided by its frequency averaged ℓ dependence and then by the ℓ-averaged frequency dependence.
Thus, the contrast in this figure does not reflect the observed envelope of the power distribution,
but only the local signal-to-noise ratio)
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Figure 1.2: Schematic description of the ray path of an acoustic wave in a radially stratified
medium. Notice that for a mode with a large horizontal wavenumber (i.e. a large degree, dashed
curve), the wave is reflected at a shallower depth than for a mode with a smaller wavenumber (i.e.
smaller degree, dot dashed line). For this particular figure, a power law with depth for the sound
speed stratification was used and the ray path of a sound wave was computed in a cylindrical
geometry.

Therefore, for a given horizontal wavenumber (or spherical harmonic degree ℓ), there

will be a discrete set of resonant modes, or resonant frequencies, for each possible radial

overtone, n.

In a spherically symmetric model, since there is no preferential axis to define the azimuthal

direction, the acoustic spectrum will be degenerated in the azimuthal order m. In reality,

non-spherically symmetric perturbations are present on the Sun, like the solar rotation

for instance, and the 2ℓ + 1 azimuthal degeneracy will be lifted. There will be a specific

resonant frequency for each spherical harmonic degree, ℓ, azimuthal order m and radial

order n. The radial extent of the resonant cavity associated with each mode will be

characterized by the location of the inner turning point, function of ℓ and n, while the

latitudinal extent will characterized by the angular dependence of the spherical harmonic
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functions and will be a function of the ratio m/ℓ. Figure 1.3 illustrates the angular

dependence of the spherical harmonic functions, and shows the concentration of the mode

around the equator for the sectoral modes (i.e.m = ±ℓ), while the zonal modes (i.e.m = 0)

sample the polar regions as well. Since each tesseral mode (i.e.m 6= 0 andm 6= ±ℓ) samples

differently the solar acoustic cavity with latitude, latitudinal information will be carried

by these modes.

Since the first confirmation of the global resonant nature of the 5-minutes oscillations nu-

merous techniques have been developed to observe the solar oscillations and high accuracy

measurements of the acoustic spectrum for low- and intermediate-degree modes have been

made.

Using non-imaging techniques, low-degree modes (i.e. ℓ = 0, . . . , 3) have been observed in

Doppler velocity measurements (Pallé et al., 1986), total irradiance (Woodard, 1984) or

narrow spectral band luminosity (Jimenéz et al., 1987). Intermediate-resolution, full-disk

velocity or intensity measurements (i.e. imaging of the whole disk with some 8–10 arc sec

of resolution) have probed the solar acoustic spectrum for low- and intermediate-degrees

(i.e. 5 ≤ ℓ ≤ 120, see Tomczyk, 1988; Rhodes et al., 1990; Duvall et al., 1988; and Brown

and Morrow 1987). Finally, high-resolution, full-disk intensity measurements, and disk-

center, high-resolution measurements have extented the observation of the solar acoustics

spectrum up to ℓ ∼ 1400 from the ground (Libbrecht et al., 1990) and up to ℓ ∼ 2500

from space (Tarbell et al., 1980).

While a wide range of observations of the solar acoustic spectrum for low- to high-degree

modes (i.e. 0 ≤ ℓ ≤ 2500) exist, the accuracy of these measurements greatly varies with

degree. In fact, while long time baseline measurements (from a few weeks to a few months)

at low- and intermediate-degrees have led to relative uncertainties on modal frequencies

around 2 to 5 10−5, the limited set and the short temporal baseline (some 10 hours) of the

high-degree measurements have provided modal frequencies with relative uncertainties
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Figure 1.3: Selection of spherical harmonic functions for ℓ = 20, 50, 100, and m = 0, ℓ/2, ℓ respec-
tively.
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some two order of magnitude larger than for the low- and intermediate-degree modes.

Moreover systematic effects present in the measurement of high-degree modes have plagued

the initial determination of these modal frequencies (see discussion in Libbrecht et al.,

1990).

On the other hand the determination of the solar oscillation frequency splittings, namely

the variation with azimuthal degree, m, of the modal frequency, has been restricted to low-

and intermediate-degrees (5 ≤ ℓ ≤ 120, Rhodes et al., 1990; Libbrecht, 1989; Tomczyk,

1988; Duvall et al., 1987; Brown and Morrow 1987). While dynamical information on the

solar interior, i.e. the internal angular velocity, is carried by the frequency splittings, the

short temporal baseline of the high-resolution measurements, and systematic effects asso-

ciated with the observational instrumentation as well as the inherent limitation associated

with the observation of high-degree modes, have prevented these initial measurements

from providing information on the subsurface layers (see Woodard and Libbrecht 1988).

1.2 Present Study

The present study is based on full-disk, high-resolution Doppler velocity measurements

of the solar surface, obtained between July 1st and July 20th 1988 at the Mt Wilson 60

foot Solar Tower, using a 1024 × 1024 pixel CCD camera, and a magneto-optical filter

configuration. The high instrumental spatial resolution combined with the average seeing

quality allowed us to observe the solar acoustic spectrum up to ℓ = 600.

The purpose of this work is to provide a more accurate and more reliable set of measure-

ments at high-degree modes (ℓ > 120) of the modal frequency and the frequency splitting.

The major motivations behind our attempt to achieve accurate measurements at high-

degree modes are: first, since the high-degree modes sample the subsurface layers of the

solar interior, a better understanding of the dynamics that prevails just below the solar
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surface is only be accessible through the measurement of high-degree splittings. Second, a

more accurate knowledge of the high-degree modal frequencies will allow a better study of

some of the structural aspects that governs the solar envelope, for instance convection. Fi-

nally, from the nature of the acoustic cavity, all the modes are reflected at the surface and

will be sensitive to the conditions that prevail just below the surface. While it has been

argued that through differential analysis of low- and intermediate-degree modes, localized

information independent of the subsurface conditions can be extracted, the residual sensi-

tivity of such an analysis scheme to the subsurface regions may introduces ambiguities, or

systematic errors, to such inferences associated to the absence of high-degree mode data.

We describe in Chapter 2 the instrumental configuration and the observational procedure

we used to acquire the raw data set while in Chapter 3 we describe the data reduction

procedures that lead from raw images to solar p-mode properties, that are the frequency

splittings and the modal frequencies, widths and amplitudes. The frequency splitting

measurements are presented in Chapter 4 while the modal frequency, width and amplitude

measurements are presented in Chapter 5. Finally, we present in Chapter 6 the solar

equatorial rotation rate as a function of depth, inferred from the frequency splittings

measured in the present study.
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Chapter 2

Instrument

The high-resolution, full-disk, line-of-sight velocity measurements used for the purpose of

this investigation were acquired at the Mount Wilson 60-Foot Solar Telescope, during the

summer of 1988, with a doppler analyzer based on a magneto-optical filter (MOF) configu-

ration combined with a 1024 by 1024 pixel CCD camera. While earlier incarnations of the

observing system have been extensively presented elsewhere (Rhodes et al., 1983; Tomczyk,

1988, and references therein), we describe in the next sections the main components of the

instrument with an emphasis on the aspects specific to the high-resolution configuration.

The main components of the instrument are outlined in Figure 2.1 and can be grouped as:

the solar telescope with its auto-guider, the doppler analyzer and the image acquisition

system.

In summary, the instrument consists of the following elements: at the top of a 60-foot high

tower, a pair of flat mirrors (M1 and M2) direct a beam of unfocused sunlight down a

light shaft to the observing room located at ground level. Some four meters above ground

level, near the base of the light shaft, a 3000 mm focal length doublet objective lens (OL),

stopped down to a 60 mm dia. aperture (OA), focuses a 28 mm dia. image of the sun just
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Figure 2.1: Schematic diagram of the instrument.
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above an horizontal optical bench. A small fraction of the focused beam is at this point

diverted by a 45 degree tilted beam splitter (BS) to the auto-guider (AG). The main part

of the beam is reflected horizontally by a 45 degree tilted flat mirror (M3) and passes

successively through the shutter (SH), the field lens (FL), the MOF doppler analyzer, and

the reimaging lens (RL) to be refocused, after a last reflection by a 45 degree tilted flat

mirror (M4) on the 1024×1024 pixels CCD camera. Three interconnected computers and

their peripherals control the data acquisition and storage procedure, and record a pair of

12 bit deep narrow band solar images each minute on the mass storage subsystem.

2.1 Solar Telescope

The Mount Wilson 60-Foot Solar Telescope was the first vertical solar telescope erected

on the Mount Wilson Observatory site. It was built July 1907 (Hale, 1908) and has since

undergone various modifications. Nevertheless its basic double tower configuration has

remained unchanged.

Two concentric four-legged towers were designed to provide, some 19 m above ground level,

a stable platform supported only by the inner tower. The dome that covers the platform,

the access stairway and the light baffling shaft that connects the platform to the observing

room, located at the ground level, are in turn supported by the outer tower. Unfortunately

some residual coupling between the towers prevents the platform that supports some of

the telescope optics from being completely isolated from the second tower. Therefore

vibrations induced in the outer tower (i.e. dome rotation) are partially transmitted to the

optical platform and cause some image motion. Fortunately, the dome itself consists of

two half-shells of slightly different radii that can be rotated a complete 360 degrees. This

configuration allows, when the dome is opened wide, almost 180 degrees of clear azimuth,

hence this reduces the need to rotate the dome to only once (or at most twice) per day.
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The coelostat (M1) and the secondary (M2) are both located on the optical platform. The

coelostat consists of a 560 mm dia. optically flat, fused quartz, aluminum coated mirror

mounted on a rotating axis aligned with the earth’s polar axis and tracks the sun at a

constant rate of 180 degrees per 24 hours. A second optically flat, fused quartz, aluminum

coated mirror of 450 mm dia. — the secondary —, located south of the coelostat, reflects

the sunlight down the lightshaft to the observing room. The secondary is fitted with a

pair of actuators in the north-south and east-west directions for fine guiding of the solar

image.

An image of the solar disk is focused in the observing room by a 3000 mm focal length

doublet objective lens (OL) stopped down to a 60 mm dia. aperture (OA). A 45 degree

uncoated glass beam splitter follows the objective lens and diverts some 10 % of the beam

horizontally southward to the auto-guider.

The telescope’s auto-guider has been extensively described elsewhere (Rhodes et al., 1983;

Tomczyk, 1988), its main characteristics are a resonant frequency of 7.5 Hz and a long term

drift of ≈2 arc sec/hour in the north-south direction and of ≈1 arc sec/hour in the east-west

direction. In view of the limited size of the objective aperture and the short exposure time

(i.e. of the order of 0.5 s) combined with the expected average seeing quality, the frequency

response of the auto-guider was considered adequate. The long term drift component was

corrected in the data reduction procedure, by an a posteriori image registration.

2.2 MOF Doppler Analyzer

Extensive description of the theory of operation and the characteristics of an MOF-based

doppler analyzer can be found in Tomczyk, 1988 and references therein; therefore, we

present here only a simplified description of it.
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The magneto-optical filter (MOF) used as our imaging doppler analyzer, can be decom-

posed into three units, the pre-filter, the filter, and the wing selector, as shown schemati-

cally Figure 2.1. The pre-filter unit isolates a narrow part of the solar spectrum centered

around the MOF atomic absorption line. The filter unit is designed to create two narrow-

band transmission peaks in each wing of the absorption line, while the wing selector unit is

set up as to absorb one or the other transmission peak of the filter unit. The combination

of the three units allows us therefore to form a narrow-band imaging filter center around

either wing of the selected absorption line. Thus, from a pair of images taken in each

wing, a measure of the doppler displacement of the object’s absorption line with respect

to the instrument frame of reference can be made, which in turn allows a measurement of

the line-of-sight velocity on the solar disk at a depth corresponding to the line formation

region of the atomic line in the solar atmosphere.

More specifically, the pre-filter unit consists of a narrow band interference filter comple-

mented by a trim filter. The trim filter absorbs the unwanted transmission orders of the

interference filter which in turn presents a full width at half maximum of 30 Å, centered

around the sodium D lines. The filter unit consists of an atomic vapor (i.e. sodium),

contained in an evacuated glass cell (FC), immersed in a longitudinal magnetic field,

and inserted between a pair of crossed linear polarizers (P1 and P2). In the vicinity of

the magnetically split absorption lines (i.e. the sodium D lines: 5896 and 5890 Å), the

atomic vapor modifies the induced linear polarization by circular dichroism (inverse Zee-

man or Righi effect) and by circular birefringence (Faraday rotation or Macaluso-Corbino

effect), allowing a fraction of light to be transmitted through the second polarizer. Hence,

for a sufficiently large optical depth and magnetic field, two distinct transmission peaks,

centered on each wing of each absorption line, can be formed. The wing selector unit

consists of a rotatable quarter-wave plate (QW) followed by a second vapor cell (WSC)

also immersed in a longitudinal magnetic field. The circular polarized light that enters

the second vapor cell will be absorbed by the inverse Zeeman effect, in the vicinity of
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one of the two components of the magnetically split absorption lines. Thus, whether the

light entering the second vapor cell is right or left circularly polarized, the red or the blue

component1 will be absorbed. Therefore, a selection effect between each component of the

filter transmission profile is obtained by a 90 degree rotation of the quarter-wave plate.

Theoretical and experimental transmission profiles for both units under various conditions

are presented in Tomczyk’s work. The overall transmission characteristics of the MOF

(peak separation and degree of cancellation) depends on the strength of both magnetic

fields and the vapor’s optical depth (i.e. temperature) in each vapor cell.

During the 1988 summer observing campaign, the MOF was configured as to provide high

transmission, good separation and nearly complete cancellation. Therefore a 1kG field

was used in the filter unit in conjunction with initially a 4kG field in the wing selector

unit (July 1st to July 5th). On July 6th the wing selector unit’s vapor cell was damaged

and replaced by a spare 1kG wing selector unit to ensure observation continuity. A new

vapor cell was installed in the 4kG wing selector unit and replaced the 1kG unit from July

21st on.

The questions of linearity and temperature sensitivity as well as the effects of telluric

contamination of the absorption lines, have been addressed in Tomczyk work. Under the

selected operating conditions for 1988, the MOF instrumental non-linearity was expected

to be of the order 10% (Tomczyk, 1988). To reduce the instrumental temperature sensitiv-

ity, the vapor temperature stability was improved. Using a temperature controlled circuit

for the cell heating elements, a temperature stability better than 0.01 degree Celcius r.m.s.

was achieved at the cell’s pit. Moreover, instead of turning off the cell’s heating overnight,

the heating current for each cell was reduced to a lower value (≈ 70 oC) reducing signifi-

cantly the time required for the cells to achieve temperature equilibrium under operating

conditions. The ambient room temperature and the temperature of both heated pits of

1for a magnetic field aligned in the direction of the light propagation
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each cell were monitored by a digital thermometer and a second thermo-resistor probe

embedded in the heating element at each cell’s pit (the first one being used to servo the

pit’s heating). During the summer of 1987, the digital thermometer was connected, via a

serial line, to one of the data acquisition processor and the temperature was readout each

minute for a couple of days. Figure 2.2 presents the temperature curves for a typical day

and demonstrates the thermal stability achieved. Note that the thermo-resistor probes

were not calibrated, and therefore the temperature scale is only indicative of tempera-

ture changes and should not be considered in an absolute sense. Figure 2.2 shows that,

despite the limited digital resolution of the thermometer, the cell’s pit temperature drift

remains within 0.2 oC for an ambient temperature drift of some 2 oC over some 10 hours

of observations. Since the sensitivity of the MOF responsivity to the cell’s temperature

is on the order of 2–5%/oC, the long period residual drift of the cell’s temperature may

contribute at most a 1% variation of the sensitivity. As the heating circuit stability was

demonstrated satisfactory, only an hourly monitoring of the temperature by the observer

was retained during the summer of 19882

2.3 Optical Layout

The optical layout consists of the objective lens, stopped down by the objective aperture,

followed by the field lens and the reimaging lens.

The field lens (40 mm dia., 600 mm focal length) forms a virtual image of the solar

disk and a real image of the objective inside the MOF doppler analyzer, near the filter

unit vapor cell. The reimaging lens (30 mm dia., 300 mm focal length) is positioned

between the quarter-wave plate and the vapor cell of the wing selector unit to form a real

image of the solar disk on the camera focal plane. The purposes of this layout are: a)

2the temperature monitoring by the PDP-11 was also dangerously reducing the time tolerance of the
whole acquisition procedure and was therefore only run on selected “engineering” days in 1987
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Figure 2.2: Typical variation as a function of time for the ambient temperature (bottom panel)
and the cells pits (upper panels) during an “engineering” run on September 8th, 1987. Note
that the thermo-resistor probes were not calibrated, and therefore the temperature scale is only
indicative of temperature changes and should not be considered in an absolute sense.
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to confine the beam within the physical constrains of the doppler analyzer, b) to reduce

signal contamination by spatial inhomogeneities of the vapor clouds in the cells, and c) to

focus an image of the solar disk that fills the camera detector’s size.

The objective aperture is constrained, for a given field lens focal length and a fixed distance

between the objective and the field lens, by the size of the smallest optical element in the

set-up and the ability to fit the beam within the optical aperture of all of the required

optical elements. Hence, allowing for some alignment tolerance, the diameter of the filter

unit cell and the diameter of the second polarizer (both 20 mm) restricted the objective

aperture to be no greater than 60 mm. At the wavelength of the sodium D lines a 60 mm

aperture corresponds to a Raleigh diffraction limit of ≈2.5 arc sec.

Finally, the reimaging lens was positioned as to focus a 16.5 mm dia. image on the camera

focal plane, corresponding to a 900 pixels dia. image or a 2.13 arc sec per pixel resolution.

Since the actual point spread function of the optics is somewhat larger than the Raleigh

diffraction limit, the instrumental spatial resolution was estimated to be of the order of or

better than 3 arc sec, a values of the order of the average seeing level expected over a few-

week-long period at Mount Wilson. Since a 3 arc sec resolution at disk center corresponds

to a spherical harmonic degree of ≈1000, the spatial resolution of the instrument was

considered adequate for the purpose of this investigation.

2.4 1024×1024 CCD Camera and Data Acquisition System

A schematic diagram of the data acquisition system is presented Figure 2.3. Images

were acquired with a custom made camera, build by JPL around Texas Instrument’s

1024×1024 virtual-phase, front-side illuminated CCD array. Each pixel in the array is a

18.3 µm square element, providing a total square detection area of 18.7 mm on the side.

Each pixel has a full-well depth of 200,000 electrons with a floor noise level of the order of
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50 electrons. The camera electronic provides a 12 bit analog to digital conversion of the

camera’s signal and has been designed to provide a high readout rate (800,000 pixel per

second), resulting in a total readout time of 1370 ms per frame (Rhodes et al., 1986). For

such low readout noise, a single exposure near saturation remains photon noise limited (no

frame accumulation was performed contrary to the initial design). The exposure level was

adjusted to reach at the detector levels around 70 % of the saturation level for a signal to

noise ratio of some 370 to 1.

The instrument control and data acquisition system is build around three interconnected

computers: a PDP-11/34A minicomputer, a CSPI Mini-MAP high-speed array processor

and a LSI-11 control processor. A custom built interface connects the camera readout

electronics to the array processor, which stores each frame in a 16 bit 1024×1024 array.

The LSI-11 based system performs the real-time, interrupt driven, control operations

(shutter, quarter-wave plate rotation, camera reset and readout, . . . ), while the PDP-11,

after initializing the two other processors, takes care solely of the I/O operations. A 1.2

GB disk subsystem provides short term storage capabilities, while a 6250 bpi tape drive,

provides the final mass storage capability. (The tape unit was later complemented by a

8mm helical scan tape drive). An accurate time base with long term stability was provided

by a WWVB broadcast clock/receiver. Finally, a 1200 by 1024 8 bit color display monitor,

a graphic terminal and a printer/plotter provided on site visualization capabilities.

2.5 Observation Procedure

Before starting the actual daily observing run the following steps were performed. First,

the wing selector unit vapor cell was visually inspected for sodium deposition on the cell’s

windows. If judged necessary, the cell was removed from the optical bench, defogged3,

3defogging was performed by blowing hot air on the cell’s window until the deposited sodium was
completely vaporized
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Figure 2.3: Schematic diagram of the data acquisition system.
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and carefully repositioned on the optical bench. This operation was done every 3rd or

4th day of observation. The cell’s heating current was then progressively brought up

to the operating value. Rather that fixing the MOF operating point directly from the

cell’s temperatures, it was defined, for convenience reasons, by the intensity of the heating

current dissipated in each the cell, through the accurate positioning of a high-resolution

(i.e. 10 turns) potentiometer of the heating circuitry.

In the meantime, the dome was opened, and moved as far west as possible. The first flat

was manually aligned in the east-west direction to project a centered beam on the second

flat. Every few days, the altitude of the first flat was adjusted to compensate for the

sun’s declination variation. Then the second flat was manually aligned to reflect down the

light shaft a beam centered on the objective aperture. At this point the first flat tracking

mechanism and the second flat guiding actuators were engaged.

Before starting the velocity measurements, a white light direct picture of the sun was

taken for synoptic purposes unrelated to this work. If required, the light beam was then

centered on the shutter aperture by fine positioning of the auto-guider’s detector assembly,

and the image formed on the camera’s detector was centered by fine positioning of the flat

mirror located just in front of the camera (M4).

Then, a couple of images were acquired to check the instrumental configuration and the

exposure time, so as to give an illumination level that would reach some 2500 counts at

high noon. A dark frame, i.e. an exposure of the camera with the beam obscured in front

of the shutter assembly was taken in order to check that the optics were properly baffled

from indirect light.

As part of the daily observing procedure a second quarter-wave plate was inserted in the

beam between the pre-filter and the filter unit, and a sequence of magnetogram measure-

ments were taken for a couple of minutes (Rhodes et al., 1984). The second quarter-wave

22



plate was then removed from the beam and a second test dopplergram sequence as well

as a second dark frame sequence were taken to ensure that the optical alignment had

remained undisturbed. From the test dopplergram sequence, a crude dopplergram was

quickly computed and examined as part of the daily “quality control” procedure.

Before starting the observing run, a measurement of the location of the sky’s north-south

axis was performed with a Ronchi rule. A piece of glass with regularly spaced parallel

black stripes (a Ronchi rule) was positioned in the beam at the focus plane of the objective

lens (hence focused on the detector plane). The rule was fine position as to very precisely

align the east-west drift direction of the sun with the engraved ruling. At this point, the

doppler measurement sequence was initiated for that day’s observing run. First a pair of

images with the Ronchi rule in place was recorded4, from which the sky east-west axis

position would be later computed. Then, the Ronchi rule was removed and a pair of dark

frames, were recorded as well in order to provide a record of the dark current build-up

during the camera exposure. Thereafter, for the duration of the day, weather permitting,

a pair of images taken 5 seconds apart, in respectively the red and the blue wings of

the sodium D lines were recorded at a sampling rate of one pair of images per minute

for a raw data rate of some 4MB per minute. Around noon, just after a pair of images

were exposed the dome was rotated as far west as possible. Since the dome rotation took

some 20 seconds, only the following pair of images were partially degraded by any residual

vibrations.

At the end of the observing run, a second sequence of magnetogram images was taken,

weather permitting. The dome was then closed, the mirrors stowed in their storage position

and the cell’s heating reduced to a nominal low value.

The precise doppler measurement sequence was as follows: synchronized on the minute by

the WWVB clock/receiver, the LSI-11 initiates the opening of the shutter, by rotating by

4actually, two sets of Ronchi ruled images were recorded and stored separately

23



180 degree the shutter’s blade at a selected rate that in turns determines the exposure time.

Upon detection of the opening edge of the shutter blade by a LED/photodiode assembly

in the shutter, the camera’s CCD is reset. The CCD is then exposed during some 0.5

second while the shutter is open. Upon detection of the closing edge of the shutter blade

by a second LED/photodiode assembly, the camera readout sequence is initiated and a

first 1024 by 1024 frame is stored in the array processor. The LSI-11 then commands

a 90 degree rotation of the quarter-wave plate, mounted on a Geneva mechanism. The

90 degree rotation requires some 1.5 seconds to be completed. Thus, 5 seconds past the

minute mark, the LSI-11 reinitiates the opening of the shutter by rotating the shutter

blade in the opposite direction. As for the odd frame, the CCD is reset upon opening

detection and readout upon closure detection. A second frame is then stored in the array

processor. The LSI-11 then commands the −90 degree rotation of the quarter-wave plate,

and the same cycle is restarted on the next minute. For each shutter opening an accurate

time stamp (hundred of seconds elapsed since January 1st at 0 AM) and an instrument

status word is generated by the LSI-11. For each cycle, once the PDP-11 is notified that

the even frame has been completely readout by the array processor, its status word and

time stamp are retrieved from the LSI-11, inserted in a header and the header followed

by the frame are store to disk. The PDP-11 then repeats the same sequence for the odd

frame.

The I/O transfers turned out to be the experiment’s bottleneck, since up to 14 seconds

were required, using tailored I/O calls, to write to disk the some 2MB of data per frame

(i.e. 146 KB/s). Thus some 35 seconds were needed to acquire and store to disk one

pair of images. Since a complete day of observation, lets say 11 hours, would generate

data in excess of 2.5GB, the data had to be archived on the magnetic subsystem while

the observations were done. For this purpose, a second program, using the disk as the

intermediate buffer storage and an inter-process semaphore mechanism to communicate

with the observing program, was running asynchronously on the PDP-11 to archive the
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data on the magnetic tape subsystem.

Let us point out that, while a similar setup had been developed for earlier intermediate-

resolution CID observations (see Rhodes et al., 1983 and Tomczyk, 1988), several aspects

of the setup, specific to the CCD configuration, had to be redefined. Namely, the optical

layout and alignment has been adapted to accommodate the CCD camera and optimized

for high spatial resolution. A large fraction of the observing and diagnostic software

was rewritten to accommodate for the high-resolution mode and a modified hardware

configuration, and the observing procedure itself was redefined. Finally, let us add that

while we have personally carried out some of the initial set of observations, daily routine

observations for most of the summer have been passed on to trained observers, namely

Victoria Alten and Martin Iedema.
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Chapter 3

Data Reduction

As indicated in the previous chapter, a set of pairs of high-resolution, full-disk solar images,

taken 5 seconds apart at a rate of a pair each minute, forms the basis of the raw data

set. Since each pair consists of a “red” and a “blue” image (i.e. a narrow band image of

the solar disk centered respectively in the red or the blue wings of the sodium D lines),

each pair provides a measure of the line of sight velocity at the solar surface, through an

estimate of the doppler shift of the sun’s atmospheric sodium D lines with respect to the

instrument.

The following sections describe the successive steps of the reduction procedure leading

from raw images to solar p-modes characteristics. Its main steps may be grouped, as:

1) the conversion of raw images to dopplergrams1, 2) the calibration of dopplergrams to

velocity maps, 3) the spatial decomposition of the velocity maps into spherical harmonic

coefficients, 4) the spectral analysis of the spherical harmonic coefficient time series, and

finally, 5) the analysis of the power spectra that leads to the solar p-modes characteristics.

All the observations which form the basis of this investigation were obtained during the

1These dopplergrams should not be confused with velocity maps, see Section 3.1
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summer of 1988. More precisely, 20 continuous days of observation, spanning July 1st to

July 20th of 1988, were reduced for the purpose of this work. At a rate of two 1024 by

1024 pixel images per minute and for a typical 10 hours long daily observing run, the raw

data base consisted of some 24,000 images, or ∼46 GB of data. With such a large data

base, computational efficiency had to be considered at each step of the data reduction.

3.1 Dopplergram Computation

The first step of the data reduction consists of converting each pair of “red” and “blue”

images into a registered dopplergram.

For each day of observation, from the average of the “red” and the “blue” dark exposures

taken at the beginning of that particular observing run, a “dark frame” was computed

and was first subtracted from each frame. Next, a “despiking” procedure was performed

on each frame, where isolated anomalously valued pixels were replaced by the average of

their neighbors. Namely, the pixel to pixel intensity difference in the column direction was

compared to a weighted running mean of that quantity. A pixel was declared anomalously

valued when the absolute value of the deviation of the instantaneous difference from the

running mean difference was above a given threshold. The threshold was itself adaptive,

i.e. adjusted according to a measure of the local variation of the pixel to pixel differences.

Logic to handle “spikes” larger than one pixel was built into the procedure. No flat-field

correction was performed (see discussion below).

Then the location of the center of the solar image was computed. The position of the solar

limb was estimated from the location of the maximum of the radial first derivative of the

intensity signal (point of highest slope). In some 2750 equispaced azimuthal directions (c.f.

2750 ≃ 2πR, where R, the image radius is of the order of ≈ 440 pixels) the radial derivative

(dIdr = ∂I
∂x

∂x
∂r +

∂I
∂y

∂y
∂r ) was computed over a 5 pixel wide annulus centered around an initial
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good estimate of the solar disk size and location. For each azimuthal direction, the pixel

with the largest first derivative value was used to define the location of the limb. A fully

parametrized ellipse (i.e. center, size and orientation) was fitted through a standard non-

linear least-squares technique to those points defining the limb, with a 2.5 sigma rejection

threshold. This procedure was initiated using first a crude guess of the image size and

location in conjunction with a smaller number of azimuthal directions, a wider annulus

and a larger rejection threshold. It was then bootstrapped using progressively a larger

number of azimuthal directions, a thinner annulus and a tighter rejection threshold until

the values mentioned above were reached.

Each frame was then translated to center the image on the frame, using a bi-cubic inter-

polation (Keys, 1981) and the dopplergram computed according to:

Id(i, j) =
Ired(i, j)− Iblue(i, j)

Ired(i, j) + Iblue(i, j)
(3.1)

where Ired(i, j) and Iblue(i, j) are respectively the intensities of the dark subtracted, “de-

spiked” and registered “red” and “blue” images at the pixel (i, j) and Id(i, j) the doppler

ratio at that pixel. Since the dopplergrams were stored as 16 bit integers in order to limit

disk space usage, the doppler ratio Id was multiplied by 30,000 before being fixed to an

integer value.

Figures 3.1 to 3.3 present respectively a “red” and a “blue” raw frame, and the corre-

sponding dopplergram for a typical day. Figure 3.4 shows the actual 5-minute oscillation

velocity pattern revealed by taking the difference between two dopplergrams obtained two

minutes apart.

As by-products of the doppler computation, the total intensity over the solar disk of the

“red” and the “blue” images, and the sum of the doppler ratio over the entire solar disk

were computed. For the purpose of image quality assessment, the sum of the doppler

signal in 5 rectangular subarrays covering most of the solar disk was also computed; a
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Figure 3.1: Typical “red” filtergram
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Figure 3.2: Typical “blue” filtergram
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Figure 3.3: Typical dopplergram, corresponding to Figures 3.1 and 3.2
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Figure 3.4: Difference of two dopplergrams obtained two minutes apart. The “salt and peper” sig-
nal represents the 5-minute oscillations. Notice that the modulation by the line-of-sight projection
is clearly visible.
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Figure 3.5: Typical “red” images statistics for July 13, 1988. Namely, for each minute, the
location of the center, the major, minor axis and orientation of the principal axis the ellipse that
defines the limb, and the total intensity as a function of time (in minutes elapsed since 0:00PST)

straight line was fitted to the doppler ratio in a 512 by 8 pixel region centered on the solar

disk, and the differences in center location and size of the “red” and the “blue” image

were computed. All of these different quantities were plotted versus time for each day.

They were primarily used to spot bad images and to monitor the quality of the reduction

procedure. Examples of some of these plots for a typical day are presented in Figures 3.5

to 3.7.

Finally, by averaging the doppler ratio over non overlapping 16 by 16 pixel regions, a 64 by

64 “super-pixel” dopplergram was also generated from each full resolution 1024 by 1024

pixel dopplergrams.

The flat-field correction was judged unnecessary from the following considerations: for a

purely linear response of the detector, the normalization of the doppler ratio (see Equa-

tion (3.1)) makes it unsensitive to the detector’s responsivity if the same detector ele-
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Figure 3.6: Typical “blue” images statistics for July 13, 1988. Namely, for each minute, the
location of the center, the major, minor axis and orientation of the principal axis the ellipse that
defines the limb, and the total intensity as a function of time (in minutes elapsed since 0:00PST)

Figure 3.7: Typical dopplergram statistics for July 13, 1988. Namely, for each minute, the inte-
grated doppler signal (uncalibrated, upper left), the slope at mid-frame (lower left), the intercept
at mid-frame (lower right) and the regression coefficient for the mid-frame fit (upper right), as a
function of time (in minutes elapsed since 0:00PST)
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ment (i.e. pixel) is used for the “red” and “blue” measurements. Under that assumption,

the contribution of a non-linear term can be easily estimated. Let us consider that the

measured intensity, I, can be expressed as a function of the actual illumination, N , as

I = C0 + C1N + C2N
2 + 0(N3). Since a “dark frame” is subtracted from each image, we

shall consider C0 = 0. Let us define ε = C2/C1Nred and α = Nblue/Nred, and consider the

region of the image where Nred > Nblue. It can be easily shown that the relative error of

the doppler ratio, due to neglecting the non-linear term (C2) is given by

δId
Id

=
2εα

1 + α+ ε(1 + α2)
. (3.2)

Since typically 0 ≤ α ≤ 0.3 and ε ≈ 3 ∼ 5%, the detector’s non-linearity contribution will

be of the order of a few percent, a contribution substantially smaller that the intrinsic

MOF non-linearity.

Since the images are interpolated when translated to the center of the frame, the spatial

non-uniformity of the detector’s responsivity should also be considered. For each pair

of frames, the centers of both the “red” and the “blue” images are located very close

to each other (typically within 1/3 of a pixel), thus only the spatial non-uniformity over

the range of the interpolation kernel (4 pixels in both directions) will affect the doppler

ratio. Neglecting the spatial non-uniformity correction terms in computing the doppler

ratio can be viewed as using a “wrong” interpolation kernel, and is therefore equivalent to

introducing some degree of misregistration in each image. Such equivalent misregistration

can be expected to be at most on the order of the interpolation itself (i.e. 1/2 of a pixel).

Since the location of the center itself is not known to better than a third of a pixel (c.f.

seeing limit), neglecting the spatial non-uniformity of the detector responsivity introduces

an equivalent misregistration noise of similar amplitude and spatial scale as the seeing

noise.

Thus, in view of the difficulty of measuring adequately the detector’s responsivity non-

linearity and non-uniformity, in view of the computational cost of implementing such
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corrections and considering the limited contribution to the noise from these effects, a flat

field correction was not implemented.

Before we implemented the procedure described above in a self-contained program, some

dopplergrams were generated using a set of codes developed at JPL. In this earlier pro-

cedure, the limb definition was based on an “activity” algorithm2, an ellipse was fitted

to the limb using a annealing method and the image “despiked” using an preliminary

incarnation of the algorithm. Also, the “red” and “blue” images were rotated as well as

translated to bring the principal axis of the ellipse fitted to the limb in alignment with

the frame’s directions.

After noticing systematic problems with this set of codes (mainly related to the “activity”-

based limb definition), and, in order to make the whole process more efficient, the proce-

dure based on JPL’s codes was abandoned and replaced by a unique code implementing

the procedure described in detail above. Fortunately, from a computational point of view,

some of the dopplergrams generated with the initial procedure were not affected by these

systematics and have not been regenerated (i.e. the first 5 days of data acquired with the

1kG/4kG magnet combination).

Note that since both methods used a different definition of the limb, a different image

size was derived for the same frame. The activity-based algorithm computed image sizes

systematically ∼2 pixels larger (i.e. ∼0.5%) than the first derivative-based algorithm. A

third centering algorithm, using the zero crossing of the second derivative (inflection point)

to define the limb’s position was also developed and tested on a small set of images. This

later method gave an image size systematically ∼2 pixels smaller than the one using the

first derivative definition and a standard deviation around the mean twice as large as the

other two methods (see Table 3.1).

2The activity of a pixel was defined as the sum of the absolute values of the intensity differences of the
neighboring pixels in the two diagonal directions
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Limb position definition
2nd derivative 1st derivative “activity”

semi-major axis 440.87 ± 0.77 442.64 ± 0.46 445.00 ± 0.45
semi-minor axis 438.96 ± 1.04 441.36 ± 0.54 444.15 ± 0.54
eccentricity 9.3% 7.6% 6.2%

Table 3.1: Image size comparison for 88-07-12

Seeing, scattered light, and doppler shift contamination can be identified as the main

phenomena that deform the limb’s shape. Seeing will blur the image and can be considered

as a convolution between the actual solar limb profile and the total point spread function

(i.e. atmospheric and instrumental). Scattered light, on the other hand, will add a slowly

varying (in space and in time) background contribution, proportional to the light being

scattered, hence the local intensity. Since the doppler shift causes the intensity to vary

from one part of the image to another, the amount of scattered light will be correlated

with the doppler ratio. Finally, the limb profile itself will be modified by the doppler shift,

since a different part of the line is sampled at different doppler ratio. Figures 3.8 and 3.9

show respectively north-south and east-west midframe scans of the intensity near the limb

for a typical “blue” frame.

3.2 Calibration Procedures

In order to convert the doppler ratio into a velocity measurement, a known velocity signal

has to be compared to the observed doppler ratio. Two independently known velocity

signals can be used for this purpose. First, the solar rotation which superimposes its

signal on top of the oscillation signal, provides a potential reference value of some ± 2

km/s in amplitude at the equator. Alternatively, the sun-earth line of sight diurnal velocity

variation, due mainly to the earth’s rotation provides a second potential reference value of

some ± 400 m/s. The calibration based on the solar rotation is referred to as the spatial

calibration while the calibration based on the sun-earth diurnal velocity is referred to as
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Figure 3.8: Typical North-South scan of a filtergram image

Figure 3.9: Typical East-West scan of a filtergram image
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the temporal calibration. A complementary discussion of these calibration procedures can

be found in Tomczyk (1988).

3.2.1 Spatial Calibration

The line-of-sight velocity, Vlos due solely to the solar rotation, observed in the solar equa-

torial plane and along the sun’s equator, is given by

Vlos = ΩeqR⊙ sinφ (3.3)

where Ωeq is the equatorial rotation rate, R⊙ the sun’s radius and φ the sun’s longitude

measured from disk center. Hence, the slope of the line-of-sight velocity versus sinφ at

disk center provides the spatial calibrator. Since we are not observing the sun from its

equatorial plane, nor have we the sun’s equator aligned with the camera’s row direction,

the slope at disk center is, for small angles, given by ΩeqR⊙ cos(Peff) cos(Bo), where Peff is

the angle between the sun’s rotation axis and the camera’s column direction and is the sum

of the Ronchi angle, ΘR and the position angle of the rotation axis P (hence the effective

position angle), and where Bo is the inclination of the solar axis out of the plane of the

sky. Since the oscillation signal perturbs the measured slope by some 5% (see Figure 3.7),

the slope at disk center cannot be used as an instantaneous calibrator, hence averaging

over periods larger that 5 minutes is therefore required. A potential perturbation of the

disk center slope resides in the contamination of the doppler ratio by magnetic features, as

can be observed Figure 3.3. The presence of such potential perturbations was not checked

when the slope at mid-frame was initially computed, requiring an a posteriori verification.

Hence, using only the portion of the day clear of potential magnetic contamination, the

overall average of the mid-frame slope per pixel was computed. With a value of 2.83

µrad/s for Ωeq (Ulrich et al., 1988) and 696 Mm for R⊙ (Wittmann, 1977), the averaged

mid-frame slope per pixel was used, in conjunction with the image size and the solar

orientation, to determine a “spatial” calibration factor, Ks, that relates the doppler ratio
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to a velocity signal through a simple linear law: V = KsId.

3.2.2 Temporal Calibration

The sun-earth line-of-sight velocity is the sum of the earth’s rotation radial component and

the earth’s orbit radial component. Since both vary with time with known amplitudes,

the temporal variation of the spatially averaged doppler ratio can be calibrated against

the ephemeris velocity.

The orbital component of the earth’s velocity was computed using the JPL planetary

ephemeris, which takes into account the perturbation of the moon and the planets on

the earth’s orbit, and which contributes some 10 m/s. The rotational component is given

by Vr = V⊕ cos δ sinh where δ is the solar declination, h the solar hour angle, and V⊕

the earth’s rotation amplitude (385.1 m/s at Mt. Wilson). A regression analysis of

the spatially averaged doppler ratio versus the ephemeris velocity provides a “temporal”

calibration coefficient, Kt, when assuming again a simple linear law of the form: V = KtId.

The temporal calibration method assumes implicitly that the calibration coefficient is

independent of time. Since the instrumental temperature stability was improved upon

since Tomczyk’s observation, this assumption was expected to be valid. Figures 3.10

and 3.11 show a typical temporal calibration curve and regression analysis for July 13.

The remarkably high linearity of the regression plot confirms that this assumption was

indeed satisfied. Departure from linearity can be noticed in the early and late parts of the

observing run and are attributed to telluric contamination and differential extinction at

large air masses. Hence only the portion from 7:25 to 16:25 PST was used for the purpose

of temporal calibration (this range correspond to an air mass ≤ 2 as of July 8th).
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Figure 3.10: Temporal calibration curve. The dots represent the calibrated integrated Doppler
signal, while the solid line represent the ephemeris computation.

Figure 3.11: Temporal calibration regression curve. Calibrated integrated Doppler signal as a
function of the ephemeris velocity, with a straight line drawn at y = x.
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3.2.3 Non-Linear Calibration

Both calibration methods described so far assume a simple linear relation between the

doppler ratio and the velocity, i.e. V = KId. As we know from Tomczyk’s work the

MOF response presents non-linearities on the order of 10% to 15%, therefore a non-

linear temporal calibration method was also attempted. While the primary motivation for

carrying out such a non-linear calibration was for non-seismic studies of the solar velocity

field (see Hathaway et al., 1991 in preparation, and Ulrich et al., 1991 in preparation), the

effect of including or not a non-linear correction of the doppler ratio has been estimated.

Since the dependence of the calibration coefficient, K, when performing a pixel-per-pixel

temporal calibration, on (r/R) and Id, for the 1kG/4kG configuration was dominated by a

quadratic term, the following relation between velocity and doppler ratio was considered:

V = K0(1 +Kr(r/R)2)(1 +Kd(Id)
2)Id (3.4)

where r is the radius at the current pixel, R the image size, and K0, Kr and Kd are three

independent calibration coefficients. A standard non-linear least-squares procedure was

used to fit the ephemeris velocity Veph to Equation (3.4).

This non-linear temporal calibration was performed on the 64 by 64 “super-pixel” dopp-

lergrams and was carried out as follows: first at each “super-pixel” (hereafter referred to

simply as pixel) Veph(t) was fitted to V (i, j) +K(i, j)Id(t, i, j) using a linear least-squares

method. Along with the linear fit coefficients V (i, j) and K(i, j), the correlation coefficient

at each pixel was computed. Only the pixels within 0.95 of the solar disk and whose linear

fit correlations were larger than 0.95 were taken into account by the non-linear fitting

procedure in order to reject magnetically contaminated pixels. Next, the total velocity,

Vtot(t, i, j) was fitted to

V0 +K0(1 +Kr(r/R)2)(1 +KdI
2
d(t, i, j))Id(t, i, j) (3.5)
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where the total velocity, function of time and position, is the sum of a temporal component,

i.e. the ephemeris velocity, and a spatial component, i.e. the steady line-of-sight velocity

field (solar rotation, limb shift, . . . ). After fitting K0, Kr and Kd, a second linear fit

was performed, fitting this time Veph(t) to V ′(i, j) + K ′(i, j)I ′d(t, i, j), where I ′d(t, i, j) =

(1+Kr(r/R)2)(1+KdI
2
d(t, i, j))Id(t, i, j). Rather than computing the spatial term of the

total velocity field from an analytic expression, the matrix V ′(i, j) itself was used for the

spatial term, since it represents precisely the actual observed steady field. Note that since

the matrix V ′ is not known a priori, the procedure has to be iterated, over the last two

steps, using V as first guess for V ′.

If the MOF response were linear, the matrix K(i, j) would be “flat” (i.e. constant over

the solar disk) and the coefficients Kr and Kd null. Similarly, if the non-linearity of the

instrument were fully represented by the two coefficients Kr and Kd, the matrix K ′(i, j)

in turn would be flat and the coefficient V0 null. Figures 3.12 and 3.13 show, for a typical

day, the matrices K(i, j) and K ′(i, j) resulting from the non-linear calibration procedure,

where a significant improvement in the uniformity of K ′(i, j) over K(i, j) can be observed

(i.e. from a factor 4 to a factor 1.5). Nevertheless, the residual 1.5 variation of K ′ indicates

that the quadratic formulation used in Equation (3.4) was not totally adequate to fully

represent the instrumental non-linearities. Moreover, this procedure failed to converged

when applied to data acquired with the latter 1kG/1kG configuration. Indeed, the nature

of the non-linearity was no longer dominated by a quadratic term, and the actual amplitude

of the non-uniformity was smaller.
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Figure 3.12: Matrices K(i, j) and V (i, j) and the regression coefficient.
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Figure 3.13: Matrices K ′(i, j) and V ′(i, j) and the regression coefficient.
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Figure 3.14: Comparison of calibration coefficients.

3.2.4 Comparison

While the temporal calibration was carried out for all 20 days, the spatial calibration

was only performed for the 15 days acquired with the 1kG/1kG configuration3 and the

non-linear calibration was only successfully carried out for the five days acquired with the

1kG/4kG configuration. Figure 3.14 and Table 3.2 present and compare the calibration

coefficients obtained with each method.

Note that in order to compare the non-linear calibration coefficients to the spatial and

temporal coefficients we have reduced the three coefficients Ko, Kr and Kd to a unique

one, K† estimated at some intermediate value of r/R and Id. This value was selected as

to be representative of some overall average over the entire disk, namely K† = Ko(1 +

0.6Kr)(1 + 0.6KdI
2
d,max) where Id,max represent the largest value reached by the doppler

ratio.

3The computation of the mid-frame slope was not implemented in the initial procedure used to generate
the dopplergrams from the data acquired with the initial 1kG/4kG configuration
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temporal spatial non-linear calibration
date Kt Ks Vo Ko Kr Kd K†

07–01 0.2728 – 5.7 0.117 0.750 7.170 0.2067
07–02 0.2859 – 7.6 0.146 0.534 7.456 0.2363
07–03 0.2953 – 5.4 0.163 0.514 7.163 0.2595
07–04 0.3027 – 4.6 0.173 0.511 7.209 0.2749
07–05 0.3025 – 3.9 0.189 0.453 5.898 0.2828
07–06 0.4985 0.3839 – – – – –
07–07 0.5248 0.3944 – – – – –
07–08 0.5188 0.4389 – – – – –
07–09 0.5603 0.4345 – – – – –
07–10 0.5253 0.4333 – – – – –
07–11 0.5288 0.4399 – – – – –
07–12 0.5322 0.4465 – – – – –
07–13 0.5400 0.4757 – – – – –
07–14 0.5436 0.4801 – – – – –
07–15 0.5578 0.4753 – – – – –
07–16 0.5608 0.4858 – – – – –
07–17 0.5522 0.4692 – – – – –
07–18 0.5437 0.4640 – – – – –
07–19 0.4887 0.4639 – – – – –
07–20 0.4861 0.4447 – – – – –

Table 3.2: Comparison of calibration coefficients

The spatial calibration coefficients Ks, and the non-linear calibration coefficients K0 are

systematically some 15% smaller than the temporal calibration coefficients Kt. Indeed,

since the response of the MOF decreases with the velocity magnitude as well as the center-

to-limb distance, (i.e.Kd > 0 andKr > 0, see also figures 3.18 and 3.21 in Tomczyk, 1988),

the integrated doppler ratio will underestimate the integrated velocity, while the slope at

disk center is measured precisely where the MOF’s response is the largest. Let us add

that the value we used for Ωeq was an August 1987 measurement and was not corrected

to represent the actual rotation rate at the Na-D line formation altitude.

Since the temporal calibration was carried out successfully for all the 20 days of observation

and its implementation straightforward, we have used the temporal calibration coefficients

Kt in the reduction of the high resolution images. We have also investigated the effects

of neglecting the instrumental non-linearities by decomposing some of the low-resolution
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images (64 by 64 pixels) using the non-linear calibration results as well as the temporal

ones. While using the non-linear calibration lead to a different set of time series, hence

to small differences in the power spectra, the power spectra of the time series differences

where an order of magnitude smaller than the time series spectra themselves.

3.3 Spatial Decomposition

3.3.1 Theory

The next step in the data reduction consists of decomposing the velocity maps into spher-

ical harmonic coefficients. Since solar oscillations are a small perturbation of the solar

structure, and the sun oblateness is itself small, an unperturbed solar model can be con-

sidered as spherically symmetric. The natural basis for parametrizing the angular depen-

dence of small perturbations on a sphere is the complete set of orthonormal functions on

the sphere formed by the spherical harmonic functions Y m
ℓ (θ, φ). From a small pertur-

bation modal analysis of an unperturbed spherically symmetric solar model, the radial

displacement, δr, associated with the acoustic waves is given by

δr = ℜ{
∑

n,ℓ,m

ξr,n,ℓ(r)Y
m
ℓ (θ, φ) exp(i2πνn,l,mt)} (3.6)

where ξr,n,ℓ is the radial eigenfunction associated to the mode vibrating at a frequency

νn,ℓ,m, n is the mode’s radial order, ℓ its spherical harmonic degree, and m its azimuthal

order (−ℓ ≤ m ≤ ℓ). Hence, if the radial velocity field, Vr, associated with oscillations at

the surface is a superposition of normal modes, it can be written as

Vr(t, θ, φ) = ℜ{
∑

ℓ,m

Cℓ,m(t)Y m
ℓ (θ, φ)} (3.7)

where Cℓ,m(t) is given by

Cℓ,m(t) =
∑

n

An,ℓ,m exp(i2πνn,ℓ,mt+ ϕn,ℓ,m) (3.8)
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where A is the mode amplitude, ϕ its phase, and ℜ{z} stands for the real part of z.

From the orthonormal properties of spherical harmonic functions, since ℜ{z} = 1
2
(z+ z∗),

and using the property that Y m
ℓ

∗ = (−)mY −m
ℓ , it can be easily derived from Equation (3.7)

that

Cℓ,m(t) + (−)mC∗
ℓ,−m(t) = 2

∫

Vr(t, θ, φ)Y
m
ℓ

∗(θ, φ)d cos θdφ (3.9)

where the integration is over the whole sphere. The spectral analysis of Cℓ,m(t)+

(−)mC∗
ℓ,−m(t) will separate in the frequency domain the prograde (m > 0) from the

retrograde (m < 0) modes, hence, the right hand side part of Equation (3.9) needs to be

only computed for the prograde (or retrograde) modes.

In all practical cases, the observed velocity, Vobs, is the line of sight component rather than

the radial component, and can only be measured on the visible hemisphere. Since the

spherical harmonic function are not orthogonal on a fraction of the sphere, Equation (3.9)

has to be rewritten as

C̃ℓ,m(t) =
∑

ℓ′,m′

< ℓ′,m′|ℓ,m >
(

Cℓ′,m′(t) + (−)m
′

C∗
ℓ′,−m′(t)

)

(3.10)

= 2

∫

Ws(θ, φ)Vr(t, θ, φ)Y
m
ℓ

∗(θ, φ)d cos θdφ (3.11)

where Ws, defined by Vobs(t, θ, φ) = Ws(θ, φ)Vr(t, θ, φ), contains the line-of-sight projec-

tion factor cos ρ over the observed part of the sphere and is zero elsewhere; and where

< ℓ′,m′|ℓ,m >=

∫

Y m′

ℓ′ (θ, φ)Ws(θ, φ)Y
m
ℓ

∗(θ, φ)d cos θdφ (3.12)

The net effect of the spatial window function, Ws(θ, φ), is referred to as spatial leakage.

Indeed, some of the non-target mode coefficients Cℓ′,m′ will “leak” into the target coefficient

Cℓ,m time series, hence, the target spectrum.
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3.3.2 Practical Considerations

The observed line-of-sight velocity signal can be viewed as the sum of a steady field

associated with the solar rotation, a slowly varying field associated with large scale flows,

and the oscillatory field. Therefore, in order to isolate the oscillatory velocity field, a

centered 21-minute-long running mean of the velocity maps was computed and subtracted

from each frame before performing the spatial decomposition. Incidentally, this running

mean subtraction also removed any slowly varying spurious instrumental signals from the

data (i.e. scattered light).

Since no radial components can be measured near the limb, where a small misregistration

introduces large spurious signals, the image was spatially apodized. Only 95 % of the

solar disk, tapered by a 5% wide cosine bell, was used for the spatial decomposition.

From a practical standpoint, the estimate of the right-hand side of Equation (3.9) by a

direct numerical integration is highly inefficient. Brown (1985) first pointed out that the

spherical harmonic decomposition can be greatly speeded up by preforming a fast Fourier

transform (FFT) in the longitudinal direction, followed by a Legendre transform in the

latitudinal direction. Indeed, the spherical harmonic functions Y m
ℓ are defined as

Y m
ℓ (θ, φ) =

√

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ) eimφ (3.13)

where Pm
ℓ are associated Legendre polynomials. Thus, the integration over φ in Equa-

tion (3.9) is equivalent to a Fourier transform in the longitudinal direction. While the

use of an FFT accelerates greatly the numerical computation, it requires the image to be

sampled on a equispaced grid, hence a rebinning of the frame.

Therefore, after subtraction of the running mean and apodization, the velocity images

were interpolated, using also a bi-cubic algorithm, onto a grid equispaced in longitude and

latitude. A 1024-point-long FFT was performed in the longitudinal direction, while the
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associated Legendre polynomials needed for the transform in the latitudinal direction were

generated from a recurrence relation at each decomposition. Even though the amount of

memory or even disk space required to store the complete set of required polynomials

remained prohibitive, the recurrence coefficients themselves were stored in memory.

The routines used to perform the spatial decomposition were provided to us by T. Duvall,

from the GONG project. The routines were adapted to accommodate our particular image

size and geometry, and modified to handle a fully parametrized elliptical image geometry.

The routines were extensively checked, and in particular, the accuracy of the recurrence

procedure at high-degree. Hence, on 16-bit-long word machines (i.e. 32-bit-long floating-

point arithmetic) the associated Legendre recursive generation was performed in double

precision (i.e. 64-bit-long floating-point arithmetic). The option of computing only the

zonal (m = 0) and sectoral (m = ℓ) coefficients up to a higher degree than the tesseral

was added as well.

All the 90,601 even-m coefficients for 0 ≤ ℓ ≤ 600 were computed for each velocity frame.

For a subset of the data set, the zonal and sectoral decomposition alone was carried out up

to ℓ = 900, but was later abandoned since no significant solar oscillation signal was initially

found above ℓ = 600. Note that since that time, some of the dopplergrams have been

analyzed using only a portion of the image near disk center and a plane wave approximation

for the spatial decomposition (i.e. replacing the spherical harmonic decomposition by a

two dimensional Fourier transform). When reduced this way, the solar oscillation signal

for degrees up to ℓ = 900 can be seen at a significant level in the resulting power spectra

(Brown 1990, private communication).

Note that to perform correctly the image rebinning, the image geometry as well as the

solar geometry must be taken into account. This includes, for the image, the location of

the image center, the image size and orientation (major and minor axis as well as principal

axis orientation), and the orientation of the celestial north on the frame (the Ronchi angle,
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ΘR). For the sun’s geometry, it includes the rotation axis orientation, P , the inclination

of the rotation axis out of the plane, Bo, as well as the finite sun-earth distance projection

effect.

The Ronchi angle was computed from the Ronchi ruled pair of frames taken at the start

of each observing run (see Section 2.5). Edges of the pattern imprinted by the rule on

the image were detected by the peaks of the first derivative in the column direction4 lying

above a given threshold. Peaks were grouped into lines and for lines longer that a given

minimal length the slope computed with a standard least-squares method. Finally, the

mean and standard deviation around the mean of the slopes was computed. The Ronchi

angle was typically measured with a 0.1 degree of uncertainty. The uncertainty in the

actual positioning of the rule by the observer was estimated to be on the order of 0.1

degree5. The P and Bo angles were taken from the Astronomical Almanac tables and

linearly interpolated for 12:00 PST. The noon values were used to decompose the entire

day, introducing at most an error, early in the morning and late in the evening, of ±0.1

degree for the P angle and ±0.02 degree for the Bo angle. The finite sun-earth distance

projection geometry was included (a 0.5% effect), using the average sun-earth distance (a

quantity that varies less than 0.003% per day).

The image center was fixed by translating the “red” and “blue” image centers to the

frame center, but misregistration on the order or a fraction of a pixel is more likely to

have been present (see discussion Section 3.1). More important, the image size (but not its

orientation) had been found to differ by up to some 0.5% when using different algorithms

to define the limb’s position (see Section 3.1). For purely practical reasons the “activity”

based image size was adopted early on in the reduction phase (since the first dopplergrams

were generated using the procedure based upon the JPL codes, and were already spatially

4The Ronchi rule was always oriented within 5 degrees of the detector’s row direction
5The Ronchi rule had some 60 lines covering the solar disk. A deviation from alignment of half a line,

over a displacement of the solar image by 5 solar diameters can be easily detected by a casual observer
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decomposed) and was used throughout the 20 days to preserve consistency. For the days

where the dopplergrams were not computed by the JPL code based procedure, the image

size alone was computed for 1 hour of data around noon, with the JPL centering code.

3.4 Spectral Analysis

After decomposing each image in spherical harmonic coefficients, a time series for each

coefficient was formed and a spectral analysis carried out through a forward Fourier trans-

form.

The “trivial” task of reordering the 90,601 C̃m
ℓ coefficients computed for each image in

90,601 distinct time series requires the transposition of a matrix of 90,601 by 600 complex

coefficients for a typical 10-hours-long run. Since transposing in memory a 415 MB array

remains, even by today’s standards, an unrealistic approach, the size of the data set made

it, in practical terms, a significant task. Hence, the transposition has been performed in

successive steps using a disk-to-disk approach, limited in turn by the available disk space.

Figure 3.15 presents plots of the resulting time series for some selected tesseral coefficients

for a typical day.

In order to assess the quality of data after the spatial decomposition without having

to perform the complete transposition, the zonal and sectoral coefficients alone were also

saved separately from all the tesseral coefficients. Hence, the zonal and sectoral time series

could be formed by a trivial transposition of 2 by some 600 coefficient matrix, and plotted

versus time for selected values of ℓ. Since including one “bad” image in the running mean

subtraction would affect the decomposition of the 20 neighboring images, the inspection

of the zonal and sectoral time series allowed a post-facto detection of unspotted “bad”

frames. When required, these “bad” frames were discarded and the affected 20 minutes

of good data re-decomposed.
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Figure 3.15: Time series for a selection of spherical harmonic coefficients
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Once transposed, each time series was ready to be Fourier analyzed. Before computing

the FFT of the time series, each time series was zero-averaged and coefficients above a 5

sigma threshold weeded out.

High-resolution spectra were computed by combining the consecutive 20 days of data into

a 27,970-minute-long time series. Only data acquired between 06:55 and 17:05 PST were

considered (corresponding to an air mass ≤ 2.5), and tapered with a 20-minute-long cosine

bell at the beginning and the end of each day. Gaps were filled with zeros and each time

series padded with zeros to 65,536 points. A 65,536-point-long FFT was then computed

and the modulus of each spectrum computed and saved.

Figures 3.16 and 3.17 show the window function in the time domain and the frequency

domain of the high-resolution spectra. The intrinsic frequency resolution, given by

1/NFFT/Ts, where NFFT is the length of the FFT and Ts the sampling time, is 0.252 µHz.

The actual window function frequency resolution, given by 1/Tt, where Tt is the total

time spanned with data, is 0.596 µHz, hence using a 65,536 point-long FFT provided an

oversampling factor in the frequency domain of ∼ 2. Since we do not have uninterrupted

observation over the 20-day-long period, the presence of regularly spaced gaps introduces

temporal sidelobes situated 1/24h, or 11.57 µHz away from the main lobe.

Low-resolution power spectra (square of the modulus) were also computed from one-day-

long time series with a 1,024-point-long FFT. For each tesseral coefficient the respective 20

power spectra computed for each day were then averaged together. The window function

in the frequency domain for the averaged low-resolution spectra (hereafter referred to as

the low-resolution spectra) is also shown in Figure 3.17. For the low resolution spectra

the intrinsic frequency resolution is 16.3 µHz and the actual window function frequency

resolution is 27.8 µHz.
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Figure 3.16: Window function, in the time domain.

Figure 3.17: Window functions, in the frequency domain for the high-resolution (solid) and low-
resolution (dashes) spectra.
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3.5 Power Spectra Analysis

The p-mode oscillation characteristics that will, in turn, give us an insight into solar

internal properties, are the modal frequencies, amplitudes, and widths. While conceptually

it would be desirable to measure these three parameters for each observed mode, the sheer

number of modes (i.e. on the order of one million tesseral modes for 0 ≤ ℓ ≤ 600) makes

it an impractical approach. Moreover, the presence of spatial and temporal sidelobes,

the finite resolution of the power spectra and the finite lifetime of the modes themselves

complicate the interpretation of the observed spectra in these simple terms.

In a spherically symmetric model of the sun, the absence of a preferred axis for the spatial

parametrization of the eigenfunctions causes the eigenfrequencies to be degenerate in m.

This degeneracy is actually lifted by all of the non-spherical perturbations of the solar

structure and dynamics, such as solar rotation, magnetic field, temperature asphericity,

and oblateness. Since these are small perturbations of the spherical model, they will

introduce small perturbations of the eigenfrequencies, or frequency splittings. Therefore,

we can write

νn,ℓ,m = νn,ℓ +∆νn,ℓ,m (3.14)

where νn,ℓ represents the unperturbed eigenfrequency, and ∆νn,ℓ,m the frequency splitting.

Hence, the measurement of the frequency splittings can be formally dissociated from the

estimate of the unperturbed eigenfrequencies.

Note that the signal to noise ratio (SNR) can be significantly increased by collapsing all

of the tesseral spectra into a unique spectrum for a given degree. Such a collapsing is

performed by averaging all of the ℓ + 1 even-m spectra, each shifted in frequency by the

respective frequency splitting estimated for that degree and azimuthal order. Unperturbed

modal frequencies, widths and amplitudes are then estimated from these collapsed spectra.
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3.5.1 Frequency Splittings

It is customary to parametrize the frequency splittings dependence in m by a Legendre

polynomials expansion

∆νn,ℓ,m = L
N
∑

i=1

ai,n,ℓPi(−
m

L
) (3.15)

where L2 = ℓ(ℓ + 1), Pi(x) are Legendre polynomials, and N = 5. Indeed, the solar

rotation is the dominant factor in the frequency splitting, and the rotational frequency

splittings is related to the rotation rate Ω by

∆νn,ℓ,m = −m

2π

1

Cℓ,m

∫

Pm
ℓ

2(x)Kn,ℓ(r)Ω(r, x)drdx (3.16)

where Cℓ,m =
∫

Pm
ℓ

2(x)dx, Kn,ℓ is the unimodular rotation kernel (see Section 6.1.1), x =

cos(θ) and θ the colatitude. While a solid body rotation leads to a simple linear relation

in m (i.e. ∆ν = −mΩ/2π), differential rotation introduces a non-linear m dependence

of the splitting that can be parametrized by an odd-indexed polynomial expansion, since

the equatorial symmetry implies that the even-indexed coefficients to be null. Selecting

orthogonal polynomials on the [-1,1] segment renders the expansion coefficients mutually

independent.

The Legendre expansion coefficients ai were estimated using the “traditional” cross-

correlation method (Brown, 1985; Tomczyk, 1988). In this iterative method, for a given

spherical harmonic degree, ℓ, the frequency shift between a template of the unperturbed

spectrum and each tesseral spectrum is computed from a cross-correlation analysis, and

the Legendre expansion coefficients, ai, fitted in the least-squares sense to the set of fre-

quency shifts. The template spectrum is itself computed by averaging all but one tesseral

spectra, each shifted and linearly interpolated in frequency by the respective frequency

splitting estimated from the polynomial expansion at the previous iteration. At each iter-

ation the template spectra are recomputed and the analysis carried out until no significant

changes of the expansion coefficients are observed. To avoid an auto-correlation contribu-
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tion in the cross-correlation function, the respective tesseral spectrum is not included in

the computation of the template spectrum with which it is correlated.

The main advantages of the cross-correlation approach over a method based on some

individual mode fitting (see Libbrecht, 1989) are its high computational efficiency and the

improvement of the SNR of the frequency shift measurement obtained by using a frequency

range that covers more than one radial overtone. The use of several overtones performs an

implicit n-averaging of Equation (3.15) hence only provides the measure of some weighted

average of the frequency splitting expansion coefficients, i.e. ai,ℓ =< ai,n,ℓ >n. A second

drawback of the method resides in the inclusion of the sidelobes in the cross-correlation

analysis. While including the temporal sidelobes actually increases the SNR of the cross-

correlation function, the presence of spatial sidelobes makes the method susceptible to

systematic errors (see discussion in Tomczyk, 1988).

3.5.2 Mode Frequency, Amplitude and Width

An estimate of the unperturbed spectrum at each spherical harmonic degree ℓ was obtained

by averaging all the tesseral spectra, each shifted in frequency by the respective frequency

splitting estimated from the polynomial expansion measured for that degree. Averaging

over the ℓ+ 1 even-m spectra greatly increased the SNR of the collapsed spectra. Hence,

the frequencies, amplitudes and widths of the unperturbed modes were estimated from

the collapsed spectra.

A standard non-linear least-squares method was used to fit a Lorentzian profile plus a

background term to the collapsed spectrum, i.e.

Sℓ(ν) =
An,ℓ

1 + 4(
ν−νn,ℓ

wn,ℓ
)2

+B (3.17)

where Sℓ is the collapsed spectrum, B the background term, An,ℓ, νn,ℓ and wn,ℓ respectively

the mode’s amplitude, frequency and full width at half-maximum (FWHM).
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The complete non-linear fitting was performed in several steps. First, using a broad section

of the spectrum and starting from an initial reasonable estimate of the mode frequency, the

location and the amplitude of the closest maximum to the initial guess was used as initial

estimate of the mode frequency and amplitude. Using a fixed value of the mode width,

the amplitude and position were first solely fitted. In the second phase, the background

term was fitted as well and the frequency range used for the fit reduced. Only then was

the width fitted. Finally, only the frequency range spanning twice the fitted FWHM was

used to perform the fit.
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Chapter 4

Frequency Splittings

We have described in Chapter 3 the successive steps of the reduction procedure that lead

from the raw set of filtergrams to solar oscillation characteristics, namely the frequency

splittings, and the unperturbed modal frequencies, amplitudes, and, widths. In the fol-

lowing sections, we present the frequency splitting measurements obtained from both our

low- and high-resolution spectra at low, intermediate and high degree.

More precisely, we present first results obtained using all of the ℓ + 1 even-m tesseral

spectra for low and intermediate degrees, computed from the high-resolution spectra. We

next present results obtained using also all the tesseral spectra for intermediate- and high-

degree modes, but computed from the low-resolution spectra. Finally, we present results

based solely on the pairs of sectoral spectra (m = ±ℓ), for intermediate- and high-degree

modes, computed from both the high- and low-resolution spectra. In each case, we discuss

the potential sources of systematic errors and describe the procedure we used to correct

for them when required and possible.
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4.1 Tesseral Measurements

4.1.1 Results from the High-Resolution Spectra

The results of the iterative cross-correlation analysis using the high resolution spectra are

shown in Figures 4.1 and 4.2, where each expansion coefficient and its 1σ uncertainty,

estimated from the scatter to the fit, is plotted as a function of the spherical harmonic

degree, ℓ, for 20 < ℓ < 120. Note that the uncertainties computed from the scatter to the fit

underestimate the actual uncertainties on the expansion coefficients since no provision for

systematic errors (namely systematics associated with sidelobe contamination) has been

included. Conversion from synodic to sidereal values was done by adding 31.7µHz to the

first order coefficients (a1,ℓ). For each plot, the expected “surface” coefficients, estimated

from seismic independent measurements, are indicated: namely, the “gas” surface rate

(a1 = 435, a3 = 21, a5 = −4, Snodgrass 1985) estimated from spectroscopic measurements,

and the “magnetic” surface rate (a1 = 442.8, a3 = 21.7, a5 = −2.5, Snodgrass 1983),

estimated from magnetic feature motion.

Only the portion from 1.8 to 4.8 mHz of the amplitude spectra were used for the cross-

correlation analysis and the frequency shifts were computed from a 3 point parabolic fit

centered on the highest peak of the cross-correlation functions. The cross-correlation

functions were themselves computed over ±64 lags (±16.3 µHz) around the predicted shift

estimated at the previous iteration for 3 initial iterative steps, where only a third order

Legendre expansion was fitted. The cross-correlation functions were then computed over

±21 lags (±5.34 µHz) to prevent temporal sidelobe misidentification, and a fifth order

expansion was fitted. A 3σ rejection threshold was applied to the Legendre expansion

coefficients least-squares fit. The procedure was iterated until the σ-weighted average of

the absolute values of the relative differences of the fitting coefficients between successive

iterations was smaller than 1%.
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Figure 4.1: Even-indexed Legendre polynomials expansion coefficients, estimated from the high-
resolution spectra, for 20 ≤ ℓ < 120. The error bars represent the 1σ uncertainty, estimated from
the scatter to the fit, and underestimate the actual uncertainty on the expansion coefficients. If
the frequency splitting were solely due to rotation, symmetry about the equator would imply that
the even-indexed should be zero (as indicated by the dash-dotted line).
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Figure 4.2: Odd-indexed Legendre polynomials expansion coefficients, estimated from the high-
resolution spectra, for 20 ≤ ℓ < 120. The error bars represent the 1σ uncertainty, estimated
from the scatter to the fit, and underestimate the actual uncertainty on the expansion coefficients.
Expected “surface” values corresponding to the spectroscopic rotation rate (long dashes) and the
magnetic feature rotation rate (dot-dashes) are also indicated (see text for references).
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Above ℓ = 120, the decreasing modal lifetimes (see Chapter 5) and the decreasing slopes

of the ridges (i.e. δν/δℓ) that determine the location of the spatial sidelobes, cause the

peaks and their sidelobes to overlap. Peaks and sidelobes cannot be resolved any more in

the collapsed spectrum and blend into ridges. This effect is illustrated Figures 4.3 to 4.8

where the m = 0 spectrum, the collapsed spectrum, and their cross-correlation functions

are plotted for ℓ = 50 and ℓ = 140. Indeed, while in both cases the m = 0 spectra

present similar features, namely sharp peaks with their temporal and spatial sidelobes, in

the collapsed spectrum for ℓ = 50 individual modes and sidelobes can easily be identified

while in the collapsed spectrum for ℓ = 140 individual modes overlap enough to blend into

a ridge. Once peaks and sidelobes start to overlap, the contrast of the cross-correlation

function is dramatically reduced, as clearly illustrated when comparing Figure 4.5 to

Figure 4.8, and the highest peak of the cross-correlation can no longer be identified as

a measure of the modal frequency shift. Moreover, small scale features present in the

collapsed spectrum cause the cross-correlation of the individual tesseral spectra to “latch

on” to these features and render the results of the iterative procedure dependent on the

initial guess.

To remove this “latch on” behavior, we have smoothed the high-resolution spectra, re-

placing each spectral bin by a 17-bin-wide (4.23 µHz) centered average, and carried out

the cross-correlation analysis for 100 ≤ ℓ < 230. The only other differences with the un-

smoothed case were to restrict the fit to an odd term expansion for the initial 3 iterative

steps and to relax the convergence criteria to 5%. Results from this analysis are shown

in Figures 4.9 and 4.10, where the results of the unsmoothed analysis for ℓ < 120 are also

plotted for comparison.

While, for the overlapping range in ℓ, (i.e. for 100 ≤ ℓ ≤ 120), the results of both methods

agree within the internal scatter, suspicious results above ℓ = 120 are obtained. Indeed,

after a short transitional region in ℓ, the odd-indexed coefficients deviate largely from
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Figure 4.3: Portion of the ℓ = 50 and m = 0 high-resolution spectrum.

Figure 4.4: Portion of the collapsed, ℓ = 50 and <m = 0> high-resolution spectrum.
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Figure 4.5: Cross-correlation functions between the collapsed < m = 0 > and the individual
m = 20, m = 0 and m = −20 high-resolution spectra, for ℓ = 50. Note the clear signature of
the temporal sidelobes as secondary cross-correlation peaks 11.57 µHz away from the main peak.
The asymmetry in the cross-correlation function is an indication of contamination by the spatial
sidelobes.

Figure 4.6: Portion of the ℓ = 140 and m = 0 high-resolution spectrum.
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Figure 4.7: Portion of the collapsed, ℓ = 140 and <m = 0> high-resolution spectrum.

Figure 4.8: Cross-correlation functions between the collapsed < m = 0 > and the individual
m = 80, m = 0 and m = −80 high-resolution spectra, for ℓ = 140. Note that the temporal
sidelobes 11.57 µHz away from the main peak cannot be identified by contrast to Figure 4.5
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the expected “surface” values and the even-indexed coefficients deviate significantly from

zero. While deviation from expected values does not necessarily render the results as being

suspicious, the suddenness in the transition, if of solar origin, would imply an abrupt major

change in the solar structure located at a depth of around 0.1 R⊙. Moreover, the significant

deviation from zero of the a2 coefficient can not be explained in its magnitude by any of

the potential solar perturbations (i.e. magnetic field, temperature asymmetry, . . . ). But,

since this deviation occurs very precisely at the transition between resolved and unresolved

collapsed spectra, the source of these systematic errors is most probably associated with

the fact that the modes become unresolved.

In order to establish that the peculiar results obtained above ℓ = 120 were not due to

the iterative nature of the cross-correlation procedure, nor to the fact that a collapsed

spectrum with unresolved modes was correlated with individual spectra where resolved

modes may have seemed to be present, we also used the following two alternative methods

on a restricted set of high resolution spectra.

For both alternative methods, all of the cross-correlation functions of each possible pair

of tesseral spectra (m,m′) for m 6= m′ were first computed. In the first alternative

method, for each m, an average over m′, with |m − m′| ≥ 4, of the cross-correlation

functions was then computed, shifting each correlation function in frequency lag by the

frequency splitting estimated from the polynomial expansion at the previous iteration.

Frequency shifts were then computed from the m′-averaged correlation functions, and the

polynomial expansion coefficients fitted in the least-squares sense to the frequency shifts.

The method was iterated on the m′-averaged correlation functions rather than on the

template spectrum.

In the second alternative method, to avoid any form of iteration entirely, all the frequency

shift differences, δ(∆ν)m,m′ , were estimated from the (m,m′) cross-correlation functions,

and the Legendre polynomial expansion fitted to frequency shift differences. Since differ-
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Figure 4.9: Even-indexed Legendre polynomial expansion coefficients, estimated from the high-
resolution spectra, for 20 ≤ ℓ < 120, and from the the smoothed high-resolution spectra for
100 ≤ ℓ < 230. Uncertainties and “surface” values as in Figure 4.1.
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Figure 4.10: Odd-indexed Legendre polynomial expansion coefficients, estimated from the high-
resolution spectra, for 20 ≤ ℓ < 120, and from the the smoothed high resolution spectra for
100 ≤ ℓ < 230. Uncertainties and “surface” values as in Figure 4.2.
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† a0 a1 a2 a3 a4 a5
(1) 0.16± 0.19 407.01± 0.33 –0.89± 0.42 21.56± 0.49 –2.59± 0.55 –2.14± 0.61
(2) –0.22± 1.09 406.93± 1.88 1.59± 2.40 23.85± 2.82 –1.41± 3.17 –0.86± 3.49
(3) – 407.82± 0.50 0.06± 0.64 22.98± 0.75 –0.65± 0.84 –2.46± 0.92

† methods: (1)=traditional iterative method (2)=alternative iterative method (3)=alternative

non-iterative method

Table 4.1: Comparison of Legendre polynomial fitting coefficients, computed for ℓ = 50 with
different methods

† a0 a1 a2 a3 a4 a5
(1) –0.47± 0.39 418.70± 0.68 –13.14± 0.87 10.34± 1.03 0.74± 1.17 2.57± 1.28
(2) 0.01± 0.62 417.93± 1.08 –14.33± 1.39 7.66± 1.63 0.07± 1.84 6.48± 2.02
(3) – 419.87± 0.22 –13.63± 0.28 9.92± 0.33 0.43± 0.37 2.45± 0.41

† methods: (1)=traditional iterative method (2)=alternative iterative method (3)=alternative

non-iterative method

Table 4.2: Comparison of Legendre polynomial fitting coefficients, computed for ℓ = 160 with
different methods

ences of frequency shifts rather than the shifts themselves were estimated, a zero order

term could not be fitted, and the procedure was modified to fit

δ(∆ν)m,m′ = L
5
∑

i=1

ai

(

Pi(−
m

L
)− Pi(−

m′

L
)

)

(4.1)

from all the (m,m′) pairs with |m−m′| ≥ 4. The rejection of the cross-correlation functions

for |m − m′| < 4 was performed in order to reduce any peak/sidelobe correlation that

would introduce a contribution equivalent to an auto-correlation into the cross-correlation

functions.

Tables 4.1 and 4.2 compare results obtained with each method for two representative

ℓ values. Since, for both values of ℓ, all three methods agree at the 1σ level, we can

rule out as source of the systematic effects the potential different nature of the collapsed

spectrum from the individual spectra and the iterative character of the “traditional” cross-

correlation method.
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4.1.2 Results from the Low-Resolution Spectra

Results of the cross-correlation frequency splitting analysis on the low-resolution spectra

are presented in Figures 4.11 and 4.12. As for the high-resolution case, only the portion

from 1.8 to 4.8 mHz of the power spectra were used in the cross-correlation analysis. The

frequency shifts were computed here from a 5 point parabolic fit centered on the highest

peak of each cross-correlation function. The cross-correlation functions were themselves

computed over ±16 lags (260 µHz) around the predicted shift estimated at the previous

iteration for 3 initial iterative steps where only a third order Legendre expansion was

fitted. The cross-correlation functions were then computed over ±11 lags (179 µHz) and

a fifth order expansion fitted. As for the high-resolution spectra analysis, a 3σ rejection

threshold was applied to the Legendre expansion least-squares fit and the procedure was

iterated until the σ-weighted average of the absolute values of the relative differences of

the fitting coefficients between successive iteration was smaller than 1%.

4.1.3 Comparison of High- and Low-Resolution Results

Figures 4.13 and 4.14 compare the results obtained in the three different cases, shown

by the three different sets of symbols, namely: 1) the low-degree, unsmoothed, high-

resolution case, 2) the intermediate-degree, smoothed, high-resolution case, and 3) the

low-resolution case. For purposes of clarity the low-resolution results are shown binned

in 10-ℓ wide bins. Notice that: a) below ℓ ∼ 120 the smoothed high resolution results

agree with the unsmoothed high-resolution results, and b) above ℓ ∼ 140 the smoothed

high-resolution results agree with the low resolution results, while c) the low-resolution

results disagree with the unsmoothed high-resolution results (for the overlapping range in

ℓ).

These comparisons clearly indicate that, when the individual modes are not resolved (i.e.

73



Figure 4.11: Even-indexed Legendre polynomials expansion coefficients, estimated from the low-
resolution spectra, for 20 ≤ ℓ ≤ 600. Uncertainties and “surface” values as in Figure 4.1.
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Figure 4.12: Odd-indexed Legendre polynomial expansion coefficients, estimated from the low-
resolution spectra, for 20 ≤ ℓ ≤ 600. Uncertainties and “surface” values as in Figure 4.2.
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Figure 4.13: Comparison of the even-indexed Legendre polynomial expansion coefficients, es-
timated from the high-resolution spectra for 20 ≤ ℓ < 120 (triangles), from the smoothed high-
resolution spectra for 100 ≤ ℓ < 230 (squares), and binned in 10-ℓ wide bins, from the low-resolution
spectra for 20 ≤ ℓ ≤ 600 (circles with error bars)
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Figure 4.14: Comparison of the odd-indexed Legendre polynomials expansion coefficients, es-
timated from the high-resolution spectra for 20 ≤ ℓ < 120 (triangles), from the smoothed high-
resolution spectra for 100 ≤ ℓ < 230 (squares), and binned in 10ℓ wide bins, from the low-resolution
spectra for 20 ≤ ℓ ≤ 600 (circle with error bars)
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ℓ > 120 for the high-resolution spectra and at all ℓ for the low-resolution spectra), the

measured splittings are systematically erroneous. Moreover, the agreement of the low-

resolution results with the intermediate-degree, smoothed high-resolution results indicates

that the source of the systematic errors is the same in both cases. In addition, it indi-

cates that no improvement in measuring frequency splittings is gained at high degrees

by computing high-resolution spectra, rather than low-resolution ones, when high-degree

individual modes cannot be resolved any more1.

We must conclude from these comparisons that above ℓ = 120 systematic effects associated

to the non-resolved nature of the spectra introduce systematic errors in the computation of

the frequency splittings, and that these systematics are the same whether low-resolution or

high-resolution spectra are used. In order to understand the nature of these systematics

we present in the next section a discussion of their sources, and our attempt to model

them. Unfortunately, our modeling was unable to reproduce in the details the observed

systematics, and therefore, we shall present in the following section the ad hoc procedure

we have developed to correct for these systematics.

4.1.4 Sources of Systematic Errors

Once modes and sidelobes blend into ridges, or when the frequency resolution prevents

us from resolving individual modes, the measured frequency splittings will represent ridge

centroid frequency shifts rather than modal frequency shifts. Therefore, if the centroid of

the ridge does not correspond to the target mode frequency, the ridge frequency shifts will

not represent the target frequency splittings. Hence, any asymmetry with respect to the

target mode central frequency in the power density distribution of a ridge will introduce

systematic deviations in the frequency splitting measurements based on unresolved modes.

1Note that from a computational point of view, the computation of low-resolution spectra requires
significantly less resources (disk and memory) than the computation of high-resolution ones
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Indeed, recall that each individual spectrum is the Fourier transform of the C̃ℓ,m(t) time

series, where the spherical harmonic coefficients, C̃ℓ,m(t), are defined by Equation (3.10).

Hence, if Ln,ℓ,m(ν) represents the limit spectrum for an individual mode (n, ℓ,m), each

tesseral spectrum, S̃ℓ,m(ν), can be written as

S̃ℓ,m(ν) =
∑

ℓ′,m′

|<ℓ′,m′|ℓ,m> |
∑

n

Ln,ℓ,m(ν)⊗Wt(ν) + noise (4.2)

where < ℓ′,m′|ℓ,m >, the leakage matrix, is defined by Equation (3.12), Wt(ν) is the

temporal window function in the frequency domain and ⊗ represents the convolution

operator. Since spherical harmonic functions are orthogonal on the sphere, leakage matrix

elements are only significantly different from zero for ℓ′ ≈ ℓ and m′ ≈ m.

In order to resolve individual modes, the width of the convolved spectrum of each individ-

ual mode, Ln,ℓ,m ⊗Wt, must be significantly smaller than the mode separations, δν/δn,

δν/δℓ, and δν/δm. Since δν/δn ≈ 134–300 µHz, mode resolution in n will always be

realized for observing runs longer than a few hours, while, since δν/δm ≃ Ω/2π ≈ 0.42

µHz, mode resolution in m would only be possible if the modal lifetimes were significantly

longer than a month. Since, except for some low-frequency and low-degree modes, modal

lifetimes range from a few weeks for low-degree modes, to a few days for intermediate

degree modes, to a few hours for high-degree and high-order modes (see Chapter 5), res-

olution in m cannot be achieved. While “m-blending” will introduce systematic errors,

the small value of δν/δm causes this effect to remain negligible at the present level of

accuracy.

Thus, while at ℓ = 50, with δν/δℓ ≈ 20 µHz, individual peaks can easily be resolved

in ℓ from high-resolution spectra, around ℓ = 140, where δν/δℓ ≈ 8 µHz and where the

convolved FWHM ≈ 4 µHz, modes and sidelobes overlap enough to blend individual modes

into ridges2.

2Note also that the presence of temporal sidelobes in the high-resolution spectra contributes to further
blending of the overlapping modes
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Since the temporal window function in the frequency domain, Wt, and the limit spectrum,

L, are symmetric functions, while the leakage matrix is itself symmetric by definition

(< ℓ′,m′|ℓ,m >= <ℓ,m|ℓ′,m′>∗), since the curvature of the ridges is small (i.e. δν/δℓ

is a slowly varying function of ν) and the mode power density distribution is expected

to be a slow function of degree (i.e. δ logPn,ℓ,m/δℓ ≪ 1), the asymmetry of the ridges

should be small and ridge frequency shifts should have provided a good estimate of the

modal frequency splittings. Unfortunately, in all practical cases (see discussion below), the

actual leakage matrix is not symmetric and the measured modal power density distribution

a steep function of degree. Therefore, these observationally dependent systematic effects

deform the power density distribution in the ridges, and hence, systematically affect the

frequency splitting measurements.

The leakage matrix, as defined by Equation (3.12), can be estimated numerically once the

spatial window, Ws(θ, φ), is known. The main contributors to the spatial window function

are the line-of-sight projection factor, cos ρ, the spatial apodization, the image rebinning,

and the solar geometry (i.e. Peff , Bo, and the finite earth-sun distance projection) that

defines the visible part of the solar sphere. From a practical standpoint, the same numerical

efficiency related remarks apply to the computation of the leakage matrix elements, as was

the case for the spatial decomposition (see Section 3.3). Hence, we have estimated leakage

matrix elements by decomposing simulated images of the real part of spherical harmonic

functions. These simulated images included the line-of-sight projection factor and the

solar geometry parametrization (including the finite earth-sun distance projection effect);

they were then decomposed using similar apodization and rebinning parameters as those

used for the decomposition of the dopplergrams. Examples of some selected leakage matrix

elements are shown in Figures 4.15 to 4.17.

Since the geometry of the simulated images is perfectly known, the computed leakage

matrix is indeed symmetric. But, in practice, the image geometry is not perfectly known
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Figure 4.15: Leakage matrix for ℓ = 90, namely |<ℓ,m|ℓ′,m′> | for |ℓ−ℓ′| ≤ 10 and |m−m′| ≤ 10
for selected values of m.
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Figure 4.16: Leakage matrix for ℓ = 150, namely |<ℓ,m|ℓ′,m′> | for |ℓ−ℓ′| ≤ 10 and |m−m′| ≤ 10
for selected values of m.
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Figure 4.17: Leakage matrix for ℓ = 300, namely |<ℓ,m|ℓ′,m′> | for |ℓ−ℓ′| ≤ 10 and |m−m′| ≤ 10
for selected values of m.
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and some error in the measured image geometry that is used in the spatial decomposition

will always be present, hence will cause a perturbation of the leakage matrix. Indeed, an

error in the image geometry corresponds to actually using spatial masks with an erroneous

geometry. Hence, in terms of leakage (c.f. Equation (3.10)), the computed C̃ℓ,m will be

related to the Cℓ,m through what we shall refer to as the “actual” leakage matrix, a ma-

trix that is slightly different from the leakage matrix that would have be obtained if the

“correct” image geometry had been used. Once the geometry of the image and the geom-

etry of the spatial masks are different, the symmetry relation is broken and the leakage

matrix cannot be expected to be symmetric any more. More specifically, a minor error

in the image size introduces a significant asymmetry in the leakage matrix, as illustrated

in Figures 4.18 to 4.20, where perturbed leakage matrix elements are presented. These

perturbed leakage matrix elements were computed by decomposing simulated images and

using for the decomposition an image size 0.5% larger than the actual simulated image

size.

Note that the leakage matrix asymmetry remains small at low-ℓ while it becomes significant

at high-ℓ. This ℓ dependency can be easily understood, by noticing that the spherical

harmonic decomposition can be approximated by a two dimensional spatial FFT. Thus,

an image size error is equivalent to an error in the spatial sampling interval, which in

turn translates to an error in the spatial frequency interval. Hence, for a given relative

image size error, the absolute error remains small at low spatial frequencies (i.e. low-ℓ)

but becomes significant at larger spatial frequencies (i.e. high-ℓ).

A second factor that introduces an asymmetry in the leakage matrix, and hence in the

ridge power density distribution, is the observed modal power distribution as a function

of degree, ℓ, and azimuthal order, m. Indeed, the observed modal power density distribu-

tion is modulated by the total point spread function (PSF) (i.e. seeing and instrumental),

hence, the observed distribution corresponds to the convolution of the actual modal power
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Figure 4.18: Perturbed leakage matrix for ℓ = 90. By contrast to Figure 4.15 the simulated image
was decomposed with a radius 0.5% larger that the simulated image radius.
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Figure 4.19: Perturbed leakage matrix for ℓ = 150. By contrast to Figure 4.16 the simulated
image was decomposed with a radius 0.5% larger that the simulated image radius.
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Figure 4.20: Perturbed leakage matrix for ℓ = 300. By contrast to Figure 4.17 the simulated
image was decomposed with a radius 0.5% larger that the simulated image radius.
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Figure 4.21: Total power in the 5-minute band as a function of m/ℓ for ℓ = 50. The function
Cste(1 + (m/ℓ)2) is plotted as the solid line.

distribution by the total PSF. In terms of spatial frequencies, since the total modulation

transfer function (MTF) (i.e. the Fourier transform of the PSF) decreases with increas-

ing spatial frequency (c.f. seeing and finite objective aperture, see also further discussion

in Section 5.2.3), the measured power distribution will be a steeper function of spatial

frequency than the “actual” one. Moreover, the rebinning over an equispaced grid in lon-

gitude and co-latitude of an apodized, line-of-sight velocity measurement3 will introduce

an instrumental contribution to the distribution of the observed power density with az-

imuthal order, m, as illustrated in Figure 4.21 where the total power between 1.5 and 4.5

mHz is plotted as a function of m for ℓ = 50 and can be reasonably fitted to a parabolic

function of the ratio m/ℓ.

In order to confirm and assess the magnitude of such systematic effects, we have attempted

to model the frequency shift perturbations associated with the ridge power density distri-

3Recall the the line-of-sight projection factor can be view as a de-facto apodization
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bution asymmetries.

Analytical Simulation of Systematics

Firstly, we have estimated the systematic effects introduced by mode blending from an

approximate analytic expression. Let us consider that the ridge frequency is the weighted

mean of the individual modes that have leaked into the target mode, weighted by the

leakage matrix and by the modal amplitudes. Namely, that the ridge centroid, ν̃, is given

by

ν̃n,ℓ,m =

∑

ℓ′,m′

|<ℓ′,m′|ℓ,m> |An,ℓ′,m′νn,ℓ′,m′

∑

ℓ′,m′

|<ℓ′,m′|ℓ,m> |An,ℓ′,m′

(4.3)

where <ℓ′,m′|ℓ,m> is the leakage matrix as defined by Equation (3.10), and An,ℓ′,m′ the

modal amplitude.

The systematic error on the frequency splitting measurement due to the displacement of

the ridge centroid frequency with respect to the target mode frequency is then simply

given by

δ(∆ν) = ν̃n,ℓ,m − νn,ℓ,m (4.4)

In order to estimate Equation (4.4) from Equation (4.3), let us introduce the following

approximations

νn,ℓ′,m′ ≈ νn,ℓ,m +
∂ν

∂ℓ
∆ℓ+

∂ν

∂m
∆m (4.5)

An,ℓ′,m′ ≈ An,ℓ,m(1 +
∂ logA

∂ℓ
∆ℓ+

∂ logA

∂m
∆m) (4.6)

where ∆ℓ = ℓ′ − ℓ and ∆m = m′ − m. For the leakage matrix, we have used a simple

Gaussian representation, namely

<ℓ′,m′|ℓ,m>= exp(−(x− ǫ ℓ secα)2

2s2x
− y2

2s2y
) (4.7)
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where

x = +∆ℓ cosα+∆m sinα (4.8)

y = −∆ℓ sinα+∆m cosα (4.9)

α = α(m, ℓ) ≈ π

4
(
m

ℓ
) (4.10)

sx = sx(m, ℓ) ≈ sx,0 (4.11)

sy = sy(m, ℓ) ≈ sy,0(1− sy,1(
m

ℓ
)2) (4.12)

The term ǫ ℓ secα has been introduced to model the leakage matrix asymmetry due to a

minor image scale error on the order of ǫR⊙, while the functions α(m, ℓ), sx(m, ℓ) and

sy(m, ℓ) have been approximated by simple analytic expressions and adjusted to represent

the overall behavior of the leakage matrix.

Hence, after replacing the summations over ∆ℓ and ∆m by integrations, Equation (4.4)

can be rewritten, after some algebra, as

δ(∆ν) = − 1

D [ ǫℓ(
∂ν

∂ℓ
+

∂ν

∂m
tanα)

+ Qℓ
∂ν

∂ℓ
σ1 +Qm

∂ν

∂m
σ2 + (Qℓ

∂ν

∂m
+Qm

∂ν

∂ℓ
)σ0

+ ǫ2ℓ2
(

Qℓ
∂ν

∂ℓ
+Qm

∂ν

∂m
tan2 α+ (Qℓ

∂ν

∂m
+Qm

∂ν

∂ℓ
) tanα

)]

(4.13)

where

D = 1 + ǫℓ(Qℓ +Qm tanα) (4.14)

and where Qℓ = ∂ logA/∂ℓ, Qm = ∂ logA/∂m, ∂ν/∂ℓ and ∂ν/∂m are directly measurable

quantities, and

σ0 =
√
2sx

1− β3

β
sinα cosα (4.15)

σ1 =
√
2sx(

1

β
cos2 α+ β2 sin2 α) (4.16)

σ2 =
√
2sx(

1

β
sin2 α+ β2 cos2 α) (4.17)

where β = sy/sx.
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Figure 4.22: <Ql>n as a function of spherical harmonic degree ℓ. The solid line represents the
fourth order polynomial fitted to the raw values.

Since the cross-correlation method computes n-averaged splittings, a weighted n-average of

Equation (4.13) must be performed, using the respective values of Ql, ∂ν/∂ℓ, and ∂ν/∂m

for each ridge. In order to assess the dominant terms in Equation (4.13) we have initially

n-averaged the quantities Qℓ, and ∂ν/∂ℓ themselves rather than δ(∆ν). In each case,

the n-averaging was performed using a frequency dependent weighting, estimated from a

Lorentzian centered at 3.0 mHz with a FWHM of 3.0 mHz, in order to represent the power

distribution in the 5-min band. Figures 4.22 and 4.23 present these n-averaged quantities,

namely < Qℓ >n and < ∂ν/∂ℓ >n, estimated from the low resolution spectral frequency

and amplitude measurements (see Section 5.2), as well as the fourth order polynomials

fitted to these quantities, and used in the simulations.

If we also introduce the Legendre polynomial parametrization of the frequency splittings,

namely νn,ℓ,m = νn,ℓ + L
∑

aiPi(−m
L ) we can simply write

∂ν

∂m
= −

∑

aiP
′
i (−

m

L
) (4.18)
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Figure 4.23: <∂ν/∂ℓ>n as a function of spherical harmonic degree ℓ. The solid line represents
the fourth order polynomial fitted to the raw values.

where

P ′
i (x) =

dPi

dx
(4.19)

Hence, we used for these simulations an even-indexed Legendre expansion to evaluate

∂ν/∂m from Equation (4.18).

Finally, the dependency with m of the amplitude distribution was simply parametrized as

A2(m) = A2(0)(1 + γ(m/ℓ)2), and γ estimated empirically to be ∼ 1 (see Figure 4.21),

leading to a straightforward expression for Qm, namely

Qm =
1

ℓ
(

γ m/ℓ

1 + γ (m/ℓ)2
) (4.20)

First note that D ≈ 1, since ǫ ≃ 10−3, ℓ ≃ 103 and Qℓ ≃ 10−3, while Qm ≃ 1/ℓ, second,

since |α| ≤ π/4, we have
√
2/2 ≤ cosα, | sinα| ≤

√
2/2 and | tanα| ≤ +1.

In order to estimate the magnitude of the dominant terms in Equation (4.13), recall that

the frequency splitting itself can be parametrized as ∆ν = L
∑

aiPi(−m
L ), with coefficients
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ai fairly constant with ℓ, while L ≃ ℓ at large ℓ; hence, it is the quantity δ(∆ν)/L that

should be compared to the ai

Since ǫℓ ≃ 1 at ℓ large enough, we shall rewrite Equation (4.13) as

δ(∆ν)

L
≈ ǫ

∂ν

∂ℓ
(1 + ǫℓQℓ)

+ ǫ
∂ν

∂m
tanα (1 + ǫℓ(Qℓ +Qm tanα))

+
1

ℓ

(

Qℓ
∂ν

∂ℓ
σ1 +Qm

∂ν

∂m
σ2 + (Qℓ

∂ν

∂m
+Qm

∂ν

∂ℓ
)σ0

)

+ ǫ
∂ν

∂ℓ
tanα ǫℓQm (4.21)

Figures 4.24 and 4.25 present separately each term on the right-hand-side of Equation (4.21)

as grouped above, and as a function of m/ℓ, for selected values of ℓ and for respectively

β = 1−0.75(m/ℓ)2 and β = 1−0.5(m/ℓ)2. These curves have been computed with sx = 2,

γ = 1, a1 = 403, a3 = 21, a5 = −4 and the n-averaged values of Ql and ∂ν/∂ℓ presented

Figures 4.22 and 4.23.

Firstly, notice that the first term on the right-hand-side (RHS) of Equation (4.21) con-

tributes to a constant offset with m, for a given value of ℓ, and could have been ignored in

the frequency splitting context. But its constancy results directly from the ǫ ℓ secα nature

of our parametrization of the asymmetry of the perturbed leakage matrix (c.f. Equa-

tion (4.7)). Since in all likelihood, the actual perturbed leakage matrix will not display

such regular behavior in its asymmetry, the departure from this regularity will introduce

an m dependency, modulated by ǫ∂ν/∂ℓ. Since the quantity ǫ∂ν/∂ℓ is significant when

compared to the ai, mostly at low- and intermediate-ℓ, an m-modulated contribution of

this term, absent in Equation (4.13), is most likely to be present and significant.

The second term on the RHS of Equation (4.21) is, at first order, an ℓ independent term.

Indeed, only Ql and Qm are the ℓ-dependent terms, and their contribution, scaled by ǫℓ

remains small compared to 1. Hence the m-modulation of the second term is dominated
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Figure 4.24: Individual terms on the right-hand-side of Equation (4.21) as a function of m/ℓ, for
β = 1− 0.75(m/ℓ)2 (see text for further details).
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Figure 4.25: Individual terms on the right-hand-side of Equation (4.21) as a function of m/ℓ, for
β = 1− 0.5(m/ℓ)2 (see text for further details).
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by the m-dependency of ∂ν/∂m and α, while its amplitude is dominated by ǫ, the image

scale error.

The third term on the RHS of Equation (4.21) results only from amplitude distribution

asymmetries with ℓ and m, and would still be present even for a perfectly symmetric

leakage matrix. Its m-modulation is directly related to the m dependency used for the

functions α, sx and sy, while its amplitude variation with ℓ is dominated by ∂ν/∂ℓ. Since

the slope of the ridge is an order of magnitude larger than the frequency splitting slope,

this term will be dominant for low- and intermediate-degrees. Its actual m-modulation

should be expected to be different from the simple curves shown here, since the actual

m-dependency of the width and principal axis orientation of the actual leakage matrix is

expected to be more complex than our simple-minded modelization.

Finally, the last term on the RHS of Equation (4.21), included for completeness, is a

second order term in ǫ2, since ℓQm ≈ 1. Nonetheless, since the slope of the ridge is

large, as mentioned above, this second order contribution remains non-trivial at low and

intermediate degrees.

In conclusion, while we have used an oversimplified approach to model the leakage matrix4,

its asymmetries (by considering only a well behaved minor image scale error), as well as

the asymmetries in the amplitude distribution, we have derived an analytic expression

to estimate the frequency splitting perturbation associated with mode blending. This

expression indicates that asymmetries in the leakage matrix combined to the slope of the

ridges, with respect to ℓ as well as to m, contribute significantly to this perturbation, but

it also indicates that the uneven distribution of modal amplitude with ℓ and m contributes

to this perturbation as well.

4For instance we have completed ignored the parity rules that determine which are the significant
elements in the leakage matrix
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Numerical Simulation of Systematics

Our second approach to estimate the systematics introduced by mode blending on the

frequency splitting measurements, has been based on a direct numerical estimation of

Equation (4.3). In order to demonstrate that indeed, the weighted average is a good rep-

resentation of the actual measured splitting by the traditional iterative cross-correlation

procedure, we have also generated artificial low-resolution tesseral spectra, S̃ℓ,m(ν), com-

puted from a weighted superposition of overlapping individual modes and analyzed them

for frequency splittings with the iterative cross-correlation method.

Each simulated spectrum was computed from a superposition of sinc functions, centered

around νn,ℓ′,m′ = νn,ℓ′ +∆νℓ′,m′ , weighted by a numerically computed leakage matrix ele-

ment and by an empirical modal amplitude distribution, function of n, ℓ and m, according

to

S̃ℓ,m(ν) =
∑

ℓ′,m′

|<ℓ′,m′|ℓ,m> |
∑

n

An,ℓ′,m′(
sin ξ

ξ
) (4.22)

where

ξ = 2π
ν − νn,ℓ′,m′

wn,ℓ′
(4.23)

and An,ℓ′,m′ given by Equation (4.6)

For both methods, namely the direct weighted average and the artificial tesseral spectra

generation, leakage matrix elements were computed by decomposing simulated images of

the real part of spherical harmonic functions, multiplied by a line-of-sight factor. The

simulated images were generated using a realistic solar geometry (i.e. P = 12 and Bo = 3,

and a finite sun-earth distance), apodized, rebinned and decomposed with parameters

similar to those used in the decomposition of the actual solar dopplergrams. The modulus

of the decomposition coefficients for ∆ℓ = ±10 and ∆m = ±10 around the simulated

image (ℓ,m) value were computed and used as leakage matrix elements. Since the forward

computation of a high-degree spherical harmonic function is a computationally expensive
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task, only a subset of tesseral simulated images were generated and decomposed (i.e.

typically some 10–15 m values, equispaced in m, at a given ℓ), and a linear interpolation

in m/ℓ was performed to estimate the missing elements. A set of perturbed leakage matrix

elements were computed using for the decomposition an image size 0.5% larger than the

actual size of the simulated images.

The unperturbed frequency splittings, ∆νℓ′,m′ , were themselves simulated using an even-

indexed Legendre polynomial expansion, with a1 = 403, a3 = 21 and a5 = −4 (nHz,

synodic), and 5 n values were included in the simulation, selected as to represent the 5

ridges in the 5-minute band with the largest amplitude.

Figure 4.26 presents scaled frequency shifts, δ(∆ν)/L − ω(−m/L), with ω = 420 nHz,

obtained from perturbed and unperturbed leakage matrices, for ℓ =90, 150 and 300,

based on both numerical methods. The solid line represents the results of the weighted

average procedure, while the symbols represent the frequency shifts obtained at the last

iteration step of the cross-correlation based analysis of the simulated spectra. The dashed

line represents the frequency splittings that should have been measured in absence of

systematics. Since a constant offset is irrelevant in the frequency splitting context, the

curves were shifted to present a null splitting at m = 0, allowing a better comparison of

the ridge shape deformation.

Figure 4.26 clearly indicates that in most cases the weighted average procedure agrees

with the simulated spectrum procedure and that indeed the cross-correlation analysis

measures the ridge centroid frequency shift. It also indicates that a small error in the

image size introduces through the leakage matrix asymmetry a significant deformation of

the measured frequency shifts.

The numerical simulations also present a “fine structure”, that can be traced to secondary

asymmetries in the leakage matrix at large ∆ℓ. Indeed, since the slope of the ridge,
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Figure 4.26: Numerical simulations for ℓ = 90,150 and 300. Top panels: results using the correct
image size to estimate the leakage matrix elements; bottom panels: results using an overestimated
image size by 0.5%. The solid line represents the results from the weighted average procedure,
while the symbols represent the frequency shifts obtained at the last iteration step of the cross-
correlation based analysis of the simulated spectra. The dashed line represents the frequency
splittings that should have been measured in absence of systematics.
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∂ν/∂ℓ, is large compared to the frequency splitting, ∆ν, a significant asymmetry of a

small leakage matrix element at large ∆ℓ will introduce a non-negligible effect. This effect

is especially significant at low and intermediate ℓ, where the slope of the ridge is large. The

asymmetries in these small leakage matrix elements are most probably associated to some

second order numerical noise associated to the simulated images or their decomposition.

Furthermore, Figure 4.26 also indicates than even in the absence of a image size error,

the decomposition procedure introduces asymmetries in the leakage matrix due to the

non-zero value of the Bo angle, the finite sun-earth distance projection effect, the line-of-

sight attenuation and the apodization combined to the image rebinning. Hence even for

a uniform amplitude distribution with ℓ and m, and in the absence of image scale error,

such asymmetries introduce, through the procedural details of the spatial decomposition,

systematic shifts in the ridge centroid, as illustrated in Figure 4.27, where resulting defor-

mations for uniform and non-uniform amplitude distribution, and for P = Bo = 0 as well

as P = 12, Bo = 3 are presented.

As for the analytical simulations, the numerical simulations of frequency splitting pertur-

bation resulting from mode blending confirm that besides a contribution associated with

a minor image scale error, observational and procedural related asymmetries in the leak-

age matrix and the amplitude distribution do contribute significantly to the perturbation.

Since for all practical cases there will be an amplitude attenuation associated to the in-

strumental MTF, and a residual asymmetry of the leakage matrix associated to the solar

geometry, a non negligible perturbation of the frequency splitting will always be present

when frequency splitting measurements are based on ridge centroid frequency shifts.
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Figure 4.27: Numerical simulations for ℓ = 90 and 300. Top panels: results using the correct
image size and P = Bo = 0 to estimate the leakage matrix elements; bottom panel: results using
correct image size but P = 12, and Bo = 3. The solid line represents the results from weighted
average procedure, while the symbols represent the frequency shifts obtained at the last iteration
step of the cross-correlation based analysis of the simulated spectra. The dashed line represents
the frequency splittings that should have been measured in absence of systematics.
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Comparison of the Simulations

For a direct comparison with Figures 4.26 and 4.27, Figure 4.28 presents scaled frequency

shifts estimated from the analytical simulations, while Figure 4.29 shows the corresponding

actual values measured from the high-resolution, the smoothed high-resolution, and the

low resolution spectra.

These simulations indicate that indeed asymmetries in the leakage matrix and in the

modal amplitude distribution, (which in turn translates into an asymmetry in the ridge

amplitude density distribution) introduce, when individual modes cannot be not resolved,

systematic errors in the measurements of the frequency splittings on the same order of

magnitude as the observed systematics. On the other hand, the comparison with actual

measured values indicates that none of these simulations were able to represent in detail

the observed systematics, assuming that at high degrees, the measured splittings should

remain in close agreement with the surface differential rotation.

Since the detailed profile of the simulated perturbations varies significantly with the nature

and with some of the numerical details of the simulations, those simulations have been

unable to provide a definite estimate of the systematics introduced by mode blending

as a function of degree, ℓ, or azimuthal order m. We can most probably attribute the

discrepancies between the simulated and the observed perturbations to the simple-minded

nature of some of the aspects of our simulations, namely our inability to simulate in detail

the actual asymmetries of the “real” leakage matrix, and to model the asymmetries of the

amplitude distribution as a function of ℓ and m.

Nevertheless, these simulations indicates that besides systematics introduced by the asym-

metries associated to a minor image scale error, systematics related to the asymmetries

associated to the solar geometry and to the amplitude density distribution should also be

considered. Since the amplitude of the curvature of the frequency splittings as a function
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Figure 4.28: Analytical simulations for ℓ = 90, 150, 300, and 600, estimated for an image scale
error of 0.5%. The solid line represents the result from the simulation, the dashed line the represents
the frequency splittings that should have been measured in absence of systematics, while the long
dash line the amplitude of these systematics δ(∆ν)/L.
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Figure 4.29: Observed frequency shifts, scaled as in Figures 4.26 and 4.28. The symbols represent
the frequency shifts at the last iterative step and the solid line the Legendre polynomial expansion
fit. a) for ℓ = 100 using high-resolution spectra; b) for ℓ = 100 but using smoothed high-resolution
spectra; c) for ℓ = 150 using smoothed high-resolution spectra; d) for ℓ = 150 using low-resolution
spectra; e) for ℓ = 300 using low-resolution spectra and f) for ℓ = 550 using low-resolution spectra.
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of m/L is only some 5% of the slope’s amplitude, it should come as no surprise that

small perturbations in the ridge amplitude distribution perturb significantly the measured

curvature.

4.1.5 Correction for Systematic Errors

In order to correct for the systematic errors introduced when individual modes are not

resolved, we are left to rely on an ad hoc correction scheme rather that a model dependent

one, since our modelization of the systematics was unable to satisfactorily represent in all

details the effect of mode blending on frequency splitting measurements.

Such an ad hoc correction scheme is based on the overlapping region in ℓ between the high

spectral resolution “resolved” results and the low spectral resolution “unresolved” results.

Indeed, for 40 < ℓ < 120, the systematic errors introduced by not resolving individual

modes can be directly estimated by comparing “resolved” results to “unresolved” ones5.

Thus, for each degree, ℓ, we have computed differences of frequency shifts, as measured at

the last steps of the iterative cross-correlation analysis, between the high-resolution “re-

solved” results and the low resolution “unresolved” results, to directly estimate δ(∆νℓ,m),

from

δ(∆νℓ,m) = (∆νℓ,m)unresolved − (∆νℓ,m)resolved

def
= L εℓ(−

m

L
) (4.24)

The scaled “error” function εℓ(−m/L) as defined by Equation (4.24) has then been esti-

mated by averaging over several ranges of ℓ, the respective sets of δ(∆ν)/L, using a fixed

number of bins for the ratio m/L. This ℓ averaging was performed to reduce the scatter

5Note that below ℓ = 40 the low spectral resolution results become too noisy to perform a reliable
comparison, indeed, recall that around ℓ = 40 the frequency splitting between prograde and retrograde
sectoral modes is around 2Ωℓ ≈ 34 µHz, i.e. of the order of the spectral resolution
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ℓ q0 q1 q2 q3 q4 q5
50 13.1± 1.3 34.3± 2.2 −25.7± 2.8 −9.2± 3.3 2.6± 3.5 1.4± 3.7
70 10.3± 0.6 22.4± 1.2 −21.7± 1.5 −11.3± 1.7 5.1± 1.8 9.2± 2.0
90 7.6± 0.5 18.1± 0.8 −18.9± 1.0 −12.7± 1.3 3.3± 1.4 5.9± 1.4
110 5.9± 0.5 14.3± 0.9 −16.1± 1.1 −11.5± 1.3 2.7± 1.4 7.7± 1.5

in nHz, with an ℓ range of ℓ± 10, and a 21 equispaced points for the m/L binning.

80 −8.4± 0.4 −20.0± 0.8 19.5± 1.0 11.4± 1.2 −3.5± 1.2 −6.6± 1.3
80 −8.5± 0.3 −20.1± 0.6 19.6± 0.8 11.4± 0.9 −3.4± 1.0 −6.9± 1.1

in nHz, with 40 ≤ ℓ ≤ 119, and respectively a 21 or 41 equispaced points for the m/L binning.

Table 4.3: Correction coefficients qi

present in the individual “error” functions. Once ℓ-averaged, the average error functions,

ε, have been parametrized with a Legendre polynomial expansion

εℓ(−
m

L
) =

∑

i

qi,ℓPi(−
m

L
) (4.25)

through a least-squares fit procedure, where ℓ is the average value of ℓ corresponding to

the ℓ range used to compute each average error function.

It directly follows from the definition of εℓ that the “resolved” results can be recovered

from the “unresolved” results through the correction coefficients, qi,ℓ, namely that

(ai,ℓ)resolved = (ai,ℓ)unresolved − qi,ℓ (4.26)

Figure 4.30 presents several ε functions, computed using 21 equispaced bins for the m/L

ratio, and averaged over different ranges in ℓ, as well as the least-squares fitted Legendre

polynomial expansion, while Table 4.3 and Figure 4.32 present the correction coefficients

themselves obtained for each ℓ range. The overall averaged ε function (i.e. using 40 ≤ ℓ ≤

119) and corresponding correction coefficients, based on 21 and 41 equispaced bins for the

m/L ratio are presented in Figure 4.31 and listed in Table 4.3.

In order to correct the “unresolved” frequency splittings above ℓ = 120, the qi,ℓ coefficients

need to be extrapolated. A good modelization of the function εℓ would have provided

a strict framework for this extrapolation, hence reliable corrected frequency splittings
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Figure 4.30: Functions ε = δ(∆ν)/L as a function of m/L, computed using 21 equispaced bins
for m/L, a) estimated from ℓ =40–59, b) estimated from ℓ =60–79, c) estimated from ℓ =80–99,
and d) estimated from ℓ =100–119.
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Figure 4.31: Overall averaged function ε, computed using 21 (triangles) and 41 (circles) equispaced
bins for m/L, estimated from ℓ =40–119.
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Figure 4.32: Correction coefficients, qi, plotted as a function of the spherical harmonic degree ℓ.
The overall value, based on a 21 and 41 point binning respectively are also indicated.
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at high-degrees. Unfortunately, our simulations were unable to reproduce in detail the

observed error functions; therefore such an extrapolation must be carried out with extreme

caution and the extrapolated results treated with a reasonable degree of scepticism.

Note that, on one hand, the ℓ dependence of the low order qi,ℓ coefficients (namely for

i = 0, 1, 2) follows the general ℓ-dependent trend indicated in our simulations. Namely

that the systematic error introduced by mode blending decreases (in absolute terms)

with increasing degree. But on the order hand, the high-degree qi,ℓ coefficients (i.e. for

i = 3, 4, 5) display no significant trend with degree, ℓ, compared to their uncertainties.

Therefore, we have arbitrarily considered in our attempt to extrapolate the corrective

terms, qi,ℓ, a simple 1/ℓ variation for the low-degree coefficients (i.e. ℓ qi,ℓ constant with

ℓ for i = 0, 1, 2) and constant values with degree for the high-degree coefficients (i.e. qi,ℓ

constant with ℓ for i = 3, 4, 5). Corrected Legendre polynomial expansion coefficients,

based on these extrapolated correction coefficients are plotted in Figures 4.33 and 4.34.

While these corrected results should be considered with a reasonable degree of scepticism,

the corrected odd-indexed coefficients do not indicate the presence of any significant vari-

ation of the differential rotation with degree, for 100 ≤ ℓ ≤ 400. A marginally significant

variation seen at high-degree (i.e. ℓ > 400) indicates that a more pronounced differen-

tial rotation may be present closer to the surface as the discrepancy between the “gas”

and “magnetic” surface rotation rate themselves would suggest. This result relies heavily

on the assumption that the above-mentioned ℓ dependence of the correction coefficients

remains valid at such high-degrees.

The residual departure from zero of the corrected even-indexed coefficients is also delicate

to interpret. A conservative approach would consider these values as an indication of the

residual systematic errors present in the corrected set, while a speculative interpretation

would infer a potential presence near the surface of non-symmetric perturbations (i.e.
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Figure 4.33: Even-indexed Legendre polynomial expansion coefficients, estimated from the low-
resolution spectra, after being corrected for systematics introduced by mode blending.
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Figure 4.34: Odd-indexed Legendre polynomial expansion coefficients, estimated from the low-
resolution spectra, after being corrected for systematics introduced by mode blending.
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asphericity, magnetic field, . . . ). Until a more realistic theoretical characterization of the

error function is available to provide a strict framework for the correction coefficients

extrapolation, we shall take a conservative approach and will not infer any speculative

interpretation from the odd-indexed frequency splitting coefficients.

4.2 Sectoral Measurements

An alternative approach to deriving an estimate of the equatorial solar rotation rate is

to measure frequency splittings between prograde and retrograde sectoral modes directly

(i.e. m = ±ℓ). Indeed, since sectoral modes are localized around the equator, sectoral

splittings provide a direct measure of some weighted average of the rotation rate localized

around the equator, hence to first order the equatorial rotation rate (see further discussion

in Section 6.1.1).

While the sum of the even-indexed Legendre polynomial coefficients represents very pre-

cisely the sectoral frequency splittings (to a factor 2L), the direct determination of sectoral

frequency differences provides an alternative measurement of the sectoral splittings, and

therefore a check for self-consistency. Note also than since only information localized near

the equator is used in determining sectoral splittings, since only nearly-sectoral modes

(i.e. including leakage effects) are considered, the direct determination of sectoral split-

tings from sectoral spectra alone is potentially less susceptible to systematic effects.

While the transposition of the sectoral spherical harmonic coefficients into time series is a

fairly trivial task, and since the total volume of data represented by the sectoral time series

alone is a small fraction of all the tesseral time series we were able, at small extra cost, to

compute high resolution spectra for all of the even-ℓ sectoral spectra, up to ℓ = 600. From

these high-resolution sectoral spectra, we have estimated the sectoral frequency splittings

by preforming a straightforward cross-correlation between the prograde and the retrograde

113



spectra.

A second approach which we used to obtain a measure of the sectoral frequency splitting

was based on the low-resolution sectoral spectra. Here, we directly measured ridge centroid

frequency differences between prograde and retrograde spectra by fitting a Lorentzian

profile to each ridge for each sectoral spectrum.

4.2.1 Results from the High-Resolution Spectra

Figure 4.35 presents the scaled sectoral frequency splittings (i.e. ∆ν/2ℓ) obtained by di-

rectly cross-correlating the prograde and retrograde high-resolution sectoral spectra for

each even degree, ℓ. After editing out a small set of spurious measurements6, the raw

scaled splittings have been averaged over 10-ℓ wide bins, and the r.m.s. of the scatter

around the average computed to estimate the uncertainty.

4.2.2 Results from the Low-Resolution Spectra

Figure 4.36 presents the scaled sectoral frequency splittings computed from direct differ-

ences between prograde and retrograde ridge frequency centroids. Ridge centroids were

estimated from a non-linear least-squares fit using a Lorentzian profile plus a background

term. Only frequency centroids resulting from fits satisfying some predetermined quality

criteria were considered. For both low degrees (ℓ < 50) and high degrees (ℓ > 500) the

direct difference method breaks down. Indeed, at low degrees the frequency shifts remain

comparable to the spectral resolution7, hence the frequency uncertainty contributes to a

large uncertainty on the differences, while at high degree, the severe degradation of the

6The uneven modal excitation in a given observation run may lead in some cases to more power
associated to a spatial sidelobe than to the target mode, hence a spurious measurement of the frequency
splitting at that particular degree

7At ℓ = 50 the frequency shift between prograde and retrograde frequency is of the order 42 µHz, while
the low resolution spectra have a resolution of 27.8 µHz
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Figure 4.35: Scaled frequency splittings, ∆ν/2ℓ, estimated from cross-correlation of high-
resolution sectoral spectra. Splitting equivalent to the surface rotation rate, estimated from
non-seismic measurement, are indicated by the dashed (spectroscopic) and dot-dashed (magnetic
feature) lines.

SNR of a single sectoral spectrum brings the quality of the fits systematically below the

predefined quality criteria.

The raw scaled differences were averaged over radial order, n, and over degree, ℓ, by 10-ℓ

wide bins while uncertainties were estimated from the standard deviation of the mean.

4.2.3 Comparison of High- and Low-Resolution Sectoral Splittings

The remarkable agreement between the low-resolution ridge fitting and the high-resolution

cross-correlation, as as shown in Figure 4.37, confirms, if still needed, that indeed at high-

degree individual modes are not resolved any more, and that at such degrees, “raw”

frequency splitting measurements correspond to ridge frequency centroid shifts.

While low- and high-resolution sectoral measurements display such remarkable agreement,
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Figure 4.36: Scaled frequency splittings, ∆ν/2ℓ, estimated from ridge fitting to the low-resolution
sectoral spectra

Figure 4.37: Comparison of the scaled frequency shifts estimated from the high resolution cross-
correlation (filled circles) with the low-resolution ridge fitting results (open squares)
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the sectoral equivalent of the tesseral measurements estimated from the low-resolution

spectra (namely a1 + a3 + a5) presents a systematic difference of some 4 nHz with the

strictly sectoral measurements. This difference can been easily traced to the large scatter

of the frequency shifts in the tesseral measurements. Indeed, if we compute the scaled

frequency differences directly between prograde and retrograde spectra, as measured at

the last iterative step of the tesseral analysis, the same systematic difference is present,

namely that the sum of the odd-indexed coefficients systematically overestimates the direct

scaled difference.

Since the scatter of the frequency shifts with respect to the template spectrum is large, the

5th order polynomial fit cannot be tight, allowing the fitted polynomials to overestimate

the sectoral frequency splitting by ≈1%. Such discrepancy between direct differences

and sum of odd-indexed coefficients is not present in the high-resolution resolved tesseral

measurements since the fit in that case is much tighter than for the unresolved cases (see

for instance Figure 4.29).

This discrepancy disappears once the order of the fitted polynomial is increased, allowing

the fitted curve to better reproduce the fine details of the splittings curvature hence

to better match the end points. As a direct consequence of the intrinsic large scatter

of the frequency shifts, increasing the order of the fit adds only marginally significant

terms, therefore it increases the scatter and the uncertainty of the sectoral equivalent

frequency splittings (i.e. the sum of the odd-indexed coefficients) and renders it comparable

to the sectoral measurements scatter and uncertainty. Nevertheless, when extending the

Legendre polynomial expansion to the 11th order, the sum of the odd-indexed coefficients,

for ℓ > 100, agrees to within the internal scatter with the the sectoral measurements,

and presents very similar scatter. This is illustrated Figure 4.38 were the strictly sectoral

splitting measurements (from the high-resolution spectra) and sectoral equivalent tesseral

measurements (from the low-resolution spectra) computed from an 11th order polynomial
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Figure 4.38: Comparison of sectoral and tesseral equivalent (11th order) splittings. Namely,
unbinned sectoral scaled frequency shifts (∆ν/2ℓ) estimated from the cross-correlation of the high-
resolution sectoral spectra (filled circles) and sum of the odd-indexed coefficients using an 11th
order Legendre polynomial expansion and the low-resolution tesseral spectra for ℓ > 100 (open
squares).

fits are compared8 and establishes the self-consistency of our splitting results.

4.2.4 Source of systematic errors

Despite the fact that all three measurements of sectoral frequency splittings agree re-

markably well, they all represent frequency shifts between ridge frequency centroid and

will also be affected by systematic errors associated to the displacement of that centroid

with respect to the target mode frequency. Fortunately, as we shall demonstrate in the

present section, the relative amplitude of these systematics in the sectoral case remains

small, hence the sectoral splittings can be considered as more robust estimates.

8Note that the 11th order Legendre polynomial fit was carried out on the frequency shifts measured at
the last step of the iterative cross-correlation analysis, which itself was performed using only a 5th order
fit to compute the template spectrum
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As for the tesseral case, we can estimate the systematic error on the measurement of the

sectoral splitting due to mode blending from the displacement of the centroid of the ridge

with respect to the target frequency. Such systematic error can be written as

δ(∆ν)sectoral =

∑

ℓ′,m′

|<ℓ′,m′|ℓ,−ℓ> |An,ℓ′,m′(νn,ℓ′,m′ − νn,ℓ,−ℓ)

∑

ℓ′,m′

|<ℓ′,m′|ℓ,−ℓ> |An,ℓ′,m′

−

∑

ℓ′,m′

|<ℓ′,m′|ℓ,+ℓ> |An,ℓ′,m′(νn,ℓ′,m′ − νn,ℓ,+ℓ)

∑

ℓ′,m′

|<ℓ′,m′|ℓ,+ℓ> |An,ℓ′,m′

(4.27)

or simply

δ(∆ν)sectoral = δ(∆ν)|m=−ℓ − δ(∆ν)|m=+ℓ (4.28)

Using the same approximations and notations as for the tesseral case, after considering the

parity properties of the different terms in Equation (4.21), and neglecting the denominator,

D, Equation (4.27) can be rewritten as

δ(∆ν)sectoral
2ℓ

≈ ∂ν

∂m

[

ǫ (1 + ǫℓ(Ql +Qm)) +
1

ℓ
(σ0Ql + σ2Qm)

]

(4.29)

where the derivatives are estimated at m = +ℓ, and where

σ0 =

√
2

2
(
s3x − s3y
sxsy

) (4.30)

and

σ2 =

√
2

2
(
s3x + s3y
sxsy

) (4.31)

While the parity properties that lead to the cancellation of several terms of Equation (4.13)

may not be rigorously satisfied in any actual situation, the incomplete cancellation of some

of these terms would only introduce second order correction to the above result and may

be safely ignored here.

Figure 4.39 presents the sectoral splitting correction factor estimated for ǫ = 0 and

ǫ = 0.5% based on n-averaged values of Ql and ∂ν/∂ℓ, γ = 1 and ∂ν/∂m|m=+ℓ = 469
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Figure 4.39: Simulated sectoral splitting systematic error, for no image size error (dashes) and
for a 0.5% image size error (solid) as a function of degree ℓ.

nHz (i.e. a1 = 403, a3 = 21 and a5 = −4, nHz synodic). It clearly indicates, as does

Equation (4.29), that at low degrees, the systematics will be dominated by the amplitude

density distribution asymmetries, while at high-degree, they will be dominated by any

image size error, and will be, in relative terms, on the order of that image size error.

4.2.5 Correction for systematic errors

Figure 4.39 clearly indicates that above ℓ = 150 an almost constant correction of some

ǫ∂ν/∂m is required to account for a minor image scale error (i.e. ≈ 2.5 nHz for ǫ = 0.5%).

More rigorously, if we assume that the frequency splitting is given by a strict odd-indexed

expansion, we can write

∆ν

2ℓ
=

L

ℓ
(a1 + a3 + a5)

=
∆ν

2ℓ
|ridge −

δ(∆ν)

2ℓ
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=
∆ν

2ℓ
|ridge + ζ(a1 + 6a3 + 15a5) (4.32)

where

ζ = ǫ (1 + ǫℓ(Ql +Qm)) +
1

ℓ
(σ0Ql + σ2Qm) (4.33)

is a measurable quantity if ǫ can be independently estimated and ∆ν
2ℓ |ridge is the scaled

sectoral ridge centroid frequency shift. Equation (4.32) can be solved for ∆ν
2ℓ once the

ratios a3/a1 and a5/a1 are known. Since a small error on those ratios translates into a

small error on the correction, i.e. a second order effect, we have used the corrected low

resolution tesseral results, binned in 10-ℓ wide bins, to estimate these ratios, and the

n-averaged values of ∂ν/∂ℓ and Ql to estimate ζ.

Since the image scale error has been calibrated to be ǫ = −0.607% by direct comparison of

resolved mode frequency to ridge centroid frequencies computed from the high- and low-

resolution collapsed spectra respectively (see Chapter 5), we have corrected the measured

sectoral splittings according to Equation (4.32). While a residual systematic error on the

order of 1 nHz is more likely to be still present, the general trend of the sectoral splittings,

namely a decrease from some 461 nHz at ℓ = 150 to some 448 nHz at ℓ = 600 can

be regarded as significant. This indicates that based on high-degree p-mode oscillation

frequency splittings we are able to confirm a rotation rate near the surface, compatible with

the spectroscopic “surface” rotation rate, and that just below the surface, the equatorial

rotation rate increases with depth to reach a rotation rate compatible with the observed

magnetic feature rate. These results will be further discussed in Chapter 6 where the

results of formal inversions of the equatorial rotation rate as a function of depth will be

presented.
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4.3 Comparison with Previous Measurements

4.3.1 Low- and Intermediate-Degree Modes

Numerous observations of low-degree frequency splittings have been made in the past

decade, based on low-resolution velocity and intensity measurements, ranging from short

quasi-uninterrupted observing runs to 3-month-long data sets (see for instance Duvall

et al., 1988).

Rather that presenting a complete review of frequency splittings and introducing some

confusion due to potential time variations and different analysis techniques, we have lim-

ited ourselves to comparing our high-resolution low-degree splitting measurements with

the most contemporary set available of comparable measurements.

We have compared our measurements with frequency splittings estimated from a 3-month-

long data set acquired during the summer of 1988 as well, at the Big Bear Solar Obser-

vatory (BBSO) by Libbrecht. While these are preliminary results, the 1988 BBSO data

set and its analysis are in all points similar to the 1986 data set and analysis that are

described in Libbrecht (1989). These studies are based on low-resolution velocity images

obtained with a birefringent narrow band filter center on the 6439 Å Ca line, and analyzed

for frequency splittings for 10 ≤ ℓ ≤ 60, using a singlet fitting procedure. The high SNR

and high frequency resolution resulting from such long observing run allowed the Caltech

group to perform a 6th order Legendre polynomial expansion fit for each individual radial

order, n.

In order to compare Libbrecht’s results to those of the present study, we have performed a

weighted average over n of each expansion coefficient ai(n, ℓ). The weighting was adjusted

to represent the overall power distribution in the 5-minute band, namely using a Lorentzian

profile center around 3.3 mHz, with a FWHM of 3.0 mHz. To avoid pulling of the average
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by possible outliers, a 3σ rejection threshold was included in the averaging process.

Figures 4.40 to 4.42 present comparisons of the frequency splittings obtained from the

present study with the BBSO results. Despite the larger internal scatter present in our

measurements, resulting from the lower SNR due to a shorter run (by a factor 5), the

even-indexed coefficients are in good agreement. Indeed, while there is no splitting a0

coefficients in the singlet fitting method9 to compare to, Figure 4.40 shows that for both

sets a2 is marginally positive and a4 may be marginally negative. On the other hand, the

agreement for the odd-indexed coefficients is less satisfactory. For a1, while at low- and

high-degrees both sets agree at the 1σ level, our measurements are some 3 nHz smaller

than the BBSO results for 36 ≤ ℓ ≤ 54. A less significant difference for the a3 coefficient

is present, but nevertheless our measurements are again systematically smaller (by some

1.5 nHz) than the BBSO results, for the same limited range in ℓ. Finally, for a5, our

measurements are this time marginally but systematically larger than the BBSO results,

again for the same limited range in ℓ. If we now compare the sum of the odd-indexed

coefficients the remaining discrepancy is very marginally significant, if significant at all,

and mainly for 36 ≤ ℓ ≤ 54.

While no contemporaneous measurements above ℓ = 60 are presently available, we have

nevertheless extented our comparison to ℓ = 120 using the frequency splittings estimated

from the Mt Wilson 1984 observing run (Tomczyk, 1988). These splittings are based

on full-disk intermediate-resolution doppler measurements, covering five weeks of obser-

vations, in two contiguous 19-day-long and 16-day-long sets, respectively. Figure 4.43

compares the sum of the odd-indexed and the sum of the even-indexed coefficients. As for

the comparison with the BBSO set, the sum of the even-indexed coefficients presents no

significant differences, while marginally significant differences at the 1–2 nHz level may be

present in the the sum of the odd-indexed coefficients.

9The singlet method fits at each radial order νn,ℓ,m = νn,l+L
∑

ai,n,ℓPi(−m/L), where the polynomial
expansion is carried out for i = 1, 6
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Figure 4.40: Even-indexed coefficients compared with contemporaneous BBSO measurements,
reduced to n-averaged values.
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Figure 4.41: Odd-indexed coefficients compared with contemporaneous BBSO measurements,
reduced to n-averaged values.
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Figure 4.42: Sum of the odd-indexed coefficients compared with contemporaneous BBSO mea-
surements, reduced to n-averaged values.

Figure 4.43: Sum of the odd-indexed coefficients compared with 1984 Mt Wilson measurements
at low- and intermediate-degrees.
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We can conclude from these comparisons that the sectoral equivalent measurements, as

well as the individual even-indexed measurements agree quite well, with the exception of

a marginally significant systematic difference at the 1–2 nHz level with previous determi-

nations.

4.3.2 High-Degree Modes

While there have been several observations of high-resolution solar oscillations over the

past decades, no conclusive frequency splitting measurements above ℓ = 120 have been

available prior to this work.

Since the pioneer work of the late seventies (see Deubner et al., 1979), only a few studies

have concentrated on measuring high-degree splittings to infer the subsurface solar rota-

tion. While several high-resolution observations have been carried out and reduced by the

Caltech group (Woodard and Libbrecht 1988; Kaufman, 1988; Libbrecht and Kaufman,

1988), the shortness of theses runs (∼ 8–10 hours) combined to instrumental limitations

(see for instance Woodard and Libbrecht 1988) have greatly limited the potential of these

data.

Longer runs (i.e. ∼ 3−5 days) have been acquired and analyzed for the dedicated purpose

of splitting measurements (Hill et al., 1988a; Hill et al., 1988b). In these observations only

a small portion of the solar surface was observed, and no intermediate-degree resolved

modes were observed. Therefore, as acknowledged in these studies, systematic errors

associated with the nature of the observation (i.e. image drift, scanning procedure, . . . )

have not been assessed nor corrected for. Since the splittings themselves have not been

presented in these studies, we are unable to make any direct comparison with the results

of the present study.
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Chapter 5

Mode Frequency, Width and

Amplitude

We have described in Chapter 3 the reduction procedure we used to convert raw filtergrams

to power spectra as well as the procedures we used to estimate from these spectra solar os-

cillation properties, namely frequency splittings and unperturbed mode frequencies. While

the frequency splittings resulting from the analysis of the low- and high-resolution spectra

have been presented in Chapter 4, we present in the following sections the estimates of

modal frequency, width and amplitude, based on the low- and high-resolution collapsed

spectra which resulted from the frequency splitting analysis.

More precisely, we present for low- and intermediate-degree modes (i.e. 20 ≤ ℓ < 120)

frequency, width and amplitude measurements of individually identified modes computed

from the collapsed, high-resolution spectra. We also present estimates of modal frequen-

cies, widths and amplitudes, for intermediate- and high-degree modes (i.e. ℓ ≤ 600), based

on ridge centroid frequencies, widths and amplitudes computed from the collapsed, low-

resolution spectra. We present and discuss the procedures we used to convert these ridge
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characteristics to modal properties. Finally we compare these results to independent mea-

surements and discuss some of the implications of these new estimates.

5.1 Results of the High-Resolution Spectra

Figure 5.1, 5.2 and 5.3 present the individual mode frequency, FWHM, and modal total

power1 respectively, estimated from the high-resolution collapsed power spectra. Only

modes for which the non-linear least-squares fitting procedure converged, and for which

the r.m.s. of the residuals to the fit is below a given fraction of the mode amplitude, and

for which the uncertainty of the frequency is below a given threshold, have been kept.

In Figure 5.1 the size of the symbols used to plot each individual mode has been drawn

proportionally to the measured FWHM. From that figure, two features can be noted. First,

no modes above ν ≈ 3.7 mHz have been identified, and second, a bimodal distribution of

the FWHM is present, where, for modes above ℓ ≈ 45 at low frequency and above ℓ ≈ 75 at

high frequency, the measured FWHM is systematically larger than for lower degree modes

at similar frequencies. The absence of modes above 3.6 mHz is easily explained by the

fact that, since the mode FWHM increases with frequency, modes blend into ridges due

to spatial and temporal sidelobes, hence individual modes cannot be identified any longer.

On the other hand, the apparent bimodal distribution of the FWHM can be explained

by sidelobe contamination. Indeed, if the temporal sidelobe of a spatial sidelobe falls too

close to a mode, both peaks will blend and a corrupted measurement of the frequency,

FWMH, and amplitude will result. Since modal FWHM are on the order of 1–2 µHz,

corrupted measurements will occur when the spatio-temporal sidelobes fall within 1–2

µHz of a mode, hence, both frequency and FWHM will be corrupted by some 1–2 µHz

1Modal total power refers to the total power associated with the mode, hence the area under the main
lobe, namely 2πPw, where P is the amplitude — i.e. power density — and w the FWHM of the fitted
Lorentzian profile
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Figure 5.1: ℓ–ν diagram for the modes obtained from the high-resolution spectra. The size of the
symbols is drawn proportionally to the measured FWHM. Note the bimodal distribution of the
FWHM.
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Figure 5.2: FHWM for the modes obtained from the high-resolution spectra. Only FWHM outside
the spatio-temporal sidelobes contamination region have been plotted. The error bars correspond
to ± one standard deviation about the mean of 50 µHz wide bins.
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Figure 5.3: Total modal power, corrected for PSF attenuation, for the modes obtained from the
high-resolution spectra.
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(i.e. ∼ 0.05% for the frequency and ∼ 50% for the FWHM). The analysis of the ℓ–ν plane

for mode/sidelobe overlap indicates several regions susceptible to spatio-temporal sidelobe

contamination, namely when νn,ℓ − νn,ℓ′ ≈ 11.57 µHz. These regions are illustrated in

Figure 5.4, where cases for which a spatio-temporal sidelobe falls within 2 and 1 µHz

respectively of a mode have been plotted.

Therefore, the FWHM plotted in Figure 5.2 were restricted to modes located outside

the spatio-temporal sidelobe contamination region. Binned values, with ± one standard

deviation of the mean over the bin (50 µHz wide bins), have been superimposed on top of

the individual FWHM. To correct for the convolution by the widow function, the FWHM

have been corrected by subtracting in quadrature the window function FWHM. Namely,

in the Gaussian convolution approximation, we have considered

w′2
n,ℓ = w2

n,ℓ + w2
WF (5.1)

where w′ is the measured FWHM and wWF the window function width, namely 0.596

µHz.

Note also that the modal total power plotted in Figure 5.3 was not corrected for spatio-

temporal leakage attenuation. Indeed, spatio-temporal leakage causes only a fraction of

the mode power to be present in the main lobe of the target spectrum, but this fraction

is independent of frequency or degree, and only depends on the normalization used for

the spatial decomposition and the Fourier analysis. Since, as discussed at length in Sec-

tion 5.2.3, the PSF attenuation reduces the observed power at large spatial frequencies,

Figure 5.3 presents modal total power corrected for PSF attenuation using the procedure

described in Section 5.2.3.
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Figure 5.4: Sets of modes sensitive to spatio-temporal sidelobe contamination, namely modes
with a spatio-temporal sidelobe that falls within 2 µHz (upper panel) and 1 µHz (lower panel) of
that mode.
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5.1.1 Systematic Effects

We have identified and investigated several potential sources for systematic errors, namely

the collapsing procedure, the fitting procedure, and the sidelobe contamination.

Since we have estimated unperturbed mode properties by collapsing all of the even-m

tesseral spectra, these measurements are susceptible to systematic effects introduced by the

collapsing procedure itself. In order to estimate if any systematic effects were introduced

by this procedure, we have performed the frequency splitting analysis and the collapsing

using tesseral power spectra as well as tesseral amplitude spectra. While the difference

in the frequency splittings (a1 + a3 + a3) between the two methods is on the order of one

sigma (i.e. −0.08±0.56 nHz2 or 0.95±1.3 σ), the frequency difference is 2.6±2.2 nHz (less

than 1 ppm), the FWHM difference is −3.1±8.6 nHz (or −0.16±0.43%), and the relative

difference in the total power is −25.5 ± 0.4 %. In all cases, the differences presented no

correlation with frequency or degree. While the two different collapsing procedures lead

to a systematic 26% difference in total power3, (depending on whether power spectra or

amplitude spectra were used), no significant differences in the measured frequencies and

FWHM were observed. Hence, we can conclude with confidence that no systematic errors

in the mode width or frequency have been introduced by the collapsing procedure.

Since the fitting procedure used is a multiple steps non-linear procedure (see Section 3.5.2),

final results may be dependent on procedural details. In order to estimate these effects we

have carried out the fitting procedure using different procedural set-ups. While changing

the initial or intermediary steps leads to marginal differences (i.e. due to numerical round-

off effects), the portion of the spectrum used for the fit at the last steps of the fitting

procedure does influence the final results. Indeed, reducing the portion of the spectrum

used for the fit from ±2 to ±1.25 times the mode FWHM introduces noticeable differences,

2Mean of the differences and standard error of the mean, i.e. r.m.s./
√
N

3Recall that the sum of the squares is not equal to the square of the sum
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namely −2.5 ± 0.5 nHz for the frequency, 114 ± 14 nHz for the FWHM (or −5.7 ± 0.7%

in relative terms), and −4.7± 0.8 % for the total power, in relative terms. Thus, reducing

the portion of the spectrum used for the fit introduces a small (but systematic) effect in

the frequency (1 ppm), but a non negligible 6% effect for the mode width, and hence, a

5% effect in the total power.

Sidelobe contamination introduces the largest systematic errors, but only in the mode/side-

lobe overlapping regions. While it is not possible to directly estimate the amplitude of

these systematics since, without uninterrupted observations, the temporal sidelobes cannot

be eliminated, they can be nevertheless estimated to be a fraction of the FWHM.

Since, on one hand, the precise location in the ℓ–ν plane of the mode/sidelobe overlapping

regions is known, and, on the other hand, the sudden increase of the measured FWHM

provides a direct indication of the presence of such contamination, the subset of con-

taminated modes can be easely identified. Therefore, rather than attempting an ad hoc

correction, we have simply flagged the contaminated modes.

Note also that, on average, the sidelobe contamination of the frequencies cancelled out.

Namely, for the whole subset of contaminated modes, there are an equal number of modes

whose frequencies are pulled towards higher values as pulled towards lower values. Hence,

since we have used the high-resolution modal frequencies to correct for systematics in the

low-resolution results (see Section 5.2.1), the correction itself will not be affected by the

contamination.

5.1.2 Uncertainties

Appendix A lists the frequencies, corrected widths, and corrected power amplitudes with

their 1σ uncertainties for all of the modes that were successfully fitted. This set has been

restricted to modes for which σν ≤ 150 nHz and σP /P < 0.05.
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The uncertainties were estimated from the r.m.s. of the residuals to the fit, based on the

following considerations. Let us consider that the r.m.s. of the residual, r, is actually due

to an error in the fitting parameter. We can write, if f(ν; c) represents the fitting function

and c the fitted coefficient,

r2 =

∫

(f(ν; c)− f(ν; c′))2dν (5.2)

where c − c′ represents the error in the fitting coefficient that would account for the

residuals. Approximating f(ν; c) ≈ f(ν; c′) + (c − c′)∂f/∂c, and using σc = c − c′ as an

estimate of the uncertainty, we can rewrite Equation (5.2) as

r2 =
σ2
c

2wfit

∫ wfit

−wfit

(
∂f

∂c
)2dν (5.3)

where wfit is the portion of the spectrum used for the fit. If we replace f by a Lorentzian,

centered around νo, of amplitude4 P , and FWHM w, we obtain

σνo = αν
r w

P
(5.4)

σP
P

= αP
r

P
(5.5)

σw = αw
r w

P
(5.6)

where the constants αν , αP and αw are given by some simple dimensionless integrals. For

a fitting range twice the FWHM, and assuming “equipartition” of the residuals between

the three fitting coefficients, we obtain αν = 0.242, αP = 0.272, and, αw = 0.275.

5.2 Results from the Low-Resolution Spectra

Frequency, width and power density amplitudes have been computed from the low-reso-

lution m-averaged power spectra for 20 ≤ ℓ ≤ 600, by fitting a Lorentzian plus a back-

ground term, as for the high-resolution case. Since ridges rather than individual modes

4Recall that the amplitudes of the Lorentzian profiles fitted to the power spectra represent actually
power densities
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have been fitted in this case, the frequency, width, and total power needed to be corrected

to truly reflect modal properties. Indeed, as discussed in Chapter 4, the ridge centroid,

ν̃n,ℓ, will be displaced from the target mode frequency, νn,ℓ, due to leakage matrix asym-

metry and observed modal power distribution. On the other hand, the ridge width reflects

not only the convolved mode width but also the ridge slope, while the ridge total power

includes leaked power as well as target mode power.

5.2.1 Correction for Systematics: Frequencies

More quantitatively, we can estimate the ridge centroid frequency, ν̃n,ℓ from a simple

weighted average, namely

ν̃n,ℓ =

∑

ℓ′

<ℓ|ℓ′> An,ℓ′νn,ℓ′

∑

ℓ′

<ℓ|ℓ′> An,ℓ′
(5.7)

where < ℓ|ℓ′ > represents the m-averaged leakage matrix and An,ℓ′ the individual mode

amplitude density. As for Section 4.1.4 let us approximate the m-averaged leakage matrix

by a Gaussian profile, i.e.

<ℓ|ℓ′>≈ exp(−1

2
(
∆ℓ− ǫℓ

s
)2) (5.8)

where ∆ℓ = ℓ′ − ℓ, and where the ǫℓ term represents the asymmetry introduced by an

image scale error of the order of ǫR⊙. Using An,ℓ′ ≈ An,ℓ(1 + d logA/dℓ∆ℓ), and νn,ℓ′ ≈

νn,ℓ + dν/dℓ∆ℓ, we can rewrite Equation (5.7) as

δν ≈

∑

∆ℓ

exp(−(∆ℓ− ǫℓ)2

2s2
)(1 +

d logA

dℓ
∆ℓ)

dν

dℓ
∆ℓ

∑

∆ℓ

exp(−(∆ℓ− ǫℓ)2

2s2
)(1 +

d logA

dℓ
∆ℓ)

(5.9)

where δν = ν̃n,ℓ − νn,ℓ. Replacing the summation by an integral, after some algebra,

Equation (5.9) leads to

δν = (
1

1 + ǫℓd logAdℓ

s2
d logA

dℓ
+ ǫℓ)

dν

dℓ
(5.10)
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Since ǫℓ ≈ 1 and d logA/dℓ = 1
2
d logP/dℓ ≪ 1 we can write

δν = (
1

2
s2

d logP

dℓ
+ ǫℓ)

dν

dℓ
(5.11)

an expression identical to the expression derived by Libbrecht (Libbrecht and Kaufman,

1988).

Using the overlapping results from the high and low resolution cases to measure δν and,

since dν/dℓ and d logP/dℓ can be directly estimated, s and ǫ can be calibrated and the

correction extrapolated to high ℓ. While s could be estimated by computing m-averaged

leakage matrices, we have chosen to consider it as a free parameter and to estimate it from

the fit.

Note that the derivatives dν/dℓ and d logP/dℓ, which are total derivatives with respect

to degree ℓ at a fixed radial order n, were directly estimated from the set of frequencies

obtained from the high resolution spectra and the set of uncorrected power density am-

plitudes obtained from the low-resolution spectra. For each mode, these derivatives were

estimated from the slope of a least-squares straight line fit. The range of the fit, restricted

to the modes of the same radial order, was ±5ℓ for dν/dℓ and ±7ℓ for d logP/dℓ.

Using some 230 modes, for 35 ≤ ℓ ≤ 119 and 2 ≤ n ≤ 14, we have fitted in the least-squares

sense η and ǫ to

δν/
dν

dℓ
= η

d logP

dℓ
+ ǫℓ (5.12)

resulting in η = 2.12 and ǫ = −0.00607. Figures 5.5 and 5.6 show the partial and total

regression plots for the fit and indicate that, indeed, the relation expressed by Equa-

tion (5.12) was well satisfied.

These results give a leakage matrix width s of 2.06, and imply that the image size was

overestimated by some 0.61%, a value in close agreement with the image size difference

observed between the “activity” results and the first derivative results (c.f. 0.58% from

139



Figure 5.5: Partial regression plots corresponding to Equation (5.12).
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Figure 5.6: Total δν/(dν/dℓ) regression plot corresponding to Equation (5.12).

Table 3.1). In order to check the validity of the measured leakage matrix width s, and

to confirm that it does not vary with degree ℓ we have computed m-averaged leakage

matrices from simulated < ℓ,m|ℓ′,m′ > leakage matrices (as described in Section 4.1.4).

The resulting matrices for ℓ = 90, 150 and 300 are presented in Figure 5.7, where a

Gaussian profile computed with a width s = 2 has been superimposed. From this figure

we can conclude with confidence that indeed, the leakage width does not vary with ℓ,

and that it is indeed adequately represented by a Gaussian profile of width 2. Hence,

Equation (5.12) holds for high-degree modes for fixed values of η and ǫ, and therefore can

be used to estimate modal frequencies from ridge centroid frequencies.

Some 4370 modal frequencies were estimated from the low spectral resolution ridge cen-

troid frequencies, for 20 ≤ ℓ ≤ 600, as shown Figure 5.8. The derivatives dν/dℓ and

d logP/dℓ were computed using first order centered differences, to which a 4th order poly-

nomial was fitted in the least-squares sense. The fitted polynomials were then used to

estimate the derivatives needed to apply the frequency correction as expressed by Equa-
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Figure 5.7: Comparison of m-averaged leakage matrices computed from simulated images for
ℓ = 90, 150 and 300 and a Gaussian profile with s = 2.

tion (5.10) Note that the actual instrumental attenuation of the power density with degree

is properly taken into account by estimating the power density derivative from the uncor-

rected power density amplitude measurements.

For the overlapping region, the differences between the high-resolution frequencies and the

corrected low-resolution frequencies average to 85.0± 67.7 nHz (standard deviation of the

mean), with no remaining significant dependency on frequency nor degree.

5.2.2 Correction for Systematics: Widths

The ridge width results from a form of convolution between the convoluted mode width

and the ridge slope, while the convoluted mode width is the strict result of the convolu-

tion of the mode width and the observing window function width. Therefore the ridge

width cannot be used as a reliable measurement of the mode lifetime, unless it becomes
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Figure 5.8: ℓ–ν diagram for the modes obtained from the low-resolution spectra; the upper panel
shows 100σ error bars.
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significantly larger than the ridge slope and the window function width. When both of

these conditions are met, we can estimate the modal width through a simple-minded de-

convolution. Let us approximate the mode limit spectrum and the window function by

Gaussian profiles and assume that the leakage effect can be modelled by a convolution of

a Gaussian leakage. Since the convolution of a Gaussian remains a Gaussian, we can write

w2
n,l,ridge = w2

n,l + w2
WF + 4 log 2(s

dν

dℓ
)2 (5.13)

where wWF is the window function width, and sdν/dℓ the leakage matrix width in fre-

quency space5.

Ridge widths (i.e. uncorrected FWHM) are presented in Figure 5.9, while Figure 5.10

presents modal FWHM, corrected according to Equation (5.13), with wWF = 27.8 µHz

and s = 2. Only valid corrected widths (i.e. w2
n,ℓ > 0 and with a relative uncertainty

smaller than 1/3) have been kept (see also Section 5.2.4). Note that at low degree the

vast majority of corrected widths turned out to be not valid. Indeed, since the intrinsic

widths at low degree are only a few µHz we should not expect to be able to estimate

them from the low-resolution spectra. Moreover, the small FWHM obtained from the

low-resolution spectra are the most susceptible to systematic errors associated with the

crude deconvolution. Therefore we cannot expect to see a smooth transition between the

widths estimated from the low-degree, high-resolution spectra and the widths estimated

from the intermediate-degree, low-resolution spectra.

5.2.3 Correction for Systematics: Amplitudes

The total power in the ridge does not represent the total power of the target mode but

the total power that leaked into the target mode from adjacent mode spatial sidelobes as

5The factor 4 log 2 is introduced by converting e-folding width to FWHM
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Figure 5.9: Ridge FWHM (i.e. uncorrected FWHM) computed from the low-resolution spectra,
as a function of degree (lower panel) and as a function of frequency (upper panel).
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Figure 5.10: Modal FWHM (i.e. corrected FWHM) computed from the low-resolution spectra,
as a function of degree (lower panel) and as a function of frequency (upper panel). Only valid
corrected widths (i.e. w2

n,ℓ > 0 and with a relative uncertainty smaller than 1/3) have been kept.
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well as the target mode total power. Hence we can write

Pn,ℓ,tot =
∑

ℓ′

<ℓ|ℓ′>2 Pn,ℓ′ (5.14)

and, after the same approximations as above, we can write

Pn,ℓ,tot = Pn,ℓs
√
π(1 + ǫℓ

d logP

dℓ
) (5.15)

Note again that the factor ǫℓd logP/dℓ remains on the order of 3% and can be neglected,

hence only a correction by a constant factor 2
√
π is required to account for the leakage.

For high-degree modes, hence high spatial frequencies, the MTF attenuation becomes

significant. In order to estimate the mode energy, the observed total power needs to be

corrected to account for image smearing by the PSF. Therefore, we have attempted to

estimate the total MTF by comparing actual limb profiles to a theoretical limb profile.

Since the observed limb profile should be regarded as the convolution of the true limb

profile by the PSF, the MTF can be estimated from the the ratio of the Fourier transforms

of the observed limb profile and the theoretical “true” limb profile. Thus, the ridge total

power was corrected for PSF attenuation by dividing the observed power by the square

of the MTF, and for leakage by dividing by the leakage correction factor to obtain an

estimate of the modal total power.

Using north-south limb profiles to minimize potential doppler contamination in the limb

shape, we have estimated the MTF from the ratio of the average of the Fourier transforms

of a small set of observed limb profiles with the Fourier transform of a theoretical limb

profile. More precisely, we have used 10 limb profiles (i.e. 5 north and 5 south limbs),

extracted from 5 minutes of observation taken on the morning of July 12th. The raw

images were converted to “intensity-grams”, namely the registered sum of the red and the

blue filtergrams, computed using the same steps as for the computation of a dopplergram,

except that at the last step a sum was computed instead of the Doppler ratio. The theoret-

ical limb profile was estimated using the Pierce-Waddell limb darkening parametrization
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at 5900 Å (Pierce and Waddell, 1961) and only the portion of the limb between −2% and

+5% was considered. The resulting averaged and smoothed Fourier transforms and their

ratio are shown in Figure 5.11. A two-Gaussian profile was then used to parametrize the

MTF and fitted in the least-squares sense to the ratio. Namely

MTF(ℓ) =
1

1 + α

(

exp(−(
ℓ

σ1
)2) + α exp(−(

ℓ

σ2
)2)

)

(5.16)

was fitted to the observed ratio, as presented also in Figure 5.11, giving σ1 = 250.2,

σ2 = 1227.2 and α = 0.1203. The resulting estimate of the total modal power as a

function of frequency and degree is presented in Figure 5.12.

Let us point out that this estimate of the MTF was based on small subset of limb profiles,

extracted from early morning images obtained on an average seeing day. Most probably,

the overall average MTF for the full 20 days of observations is worse than our 5 minute

based estimate, since the seeing quality degrades later in the day. A better approach to

estimate the correction for the PSF attenuation would have been to estimate the MTF

for each day, if not for each hour of observation and apply the correction to the spherical

harmonic coefficients themselves rather than to the power spectra. Such a procedure will

be implemented in the near future on subsequent reductions of similar observations.

5.2.4 Uncertainties

As for the high spectral resolution results, uncertainties were estimated from the r.m.s.

of the residuals to the fit. Since the frequency resolution of the low-resolution spectra is

an order of magnitude smaller than for the high-resolution spectra, only modes for which

σν < 1.5 µHz and σP /P < 0.05 were kept. A selection of these modal frequencies, widths

and power amplitudes are listed in Appendix C.

Alternatively, we have also estimated frequency uncertainties from the internal scatter

about the ridge. Using 10-ℓ wide portions of each ridge, a quadratic polynomial in ℓ
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Figure 5.11: Fourier transforms of the observed limb (bottom panel), the theoretical limb (middle
panel) and the resulting MTF (top panel) estimated from the ratio, and the two-Gaussian profile
fitted to the ratio (dash line).
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Figure 5.12: Total modal power estimated from the low-resolution spectra, as a function of degree
(lower panel) and as a function of frequency (upper panel).
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was fitted to the corrected frequencies, using the inverse of the r.m.s. based uncertainty

as weights. The scatter of the residuals to the polynomial fit was then computed as a

measure of the uncertainty. Since the standard deviations of the mean computed this

way were of the same magnitude as the uncertainties computed from the Lorentzian fit

residuals r.m.s., the uncertainties computed from the r.m.s. of the residuals must have

been underestimated by a factor
√
N ≃ 3, invalidating the “equipartition” assumption.

Since widths were corrected according to Equation (5.13), the uncertainty introduced by

the correction should be propagated to the corrected width uncertainties. Since there is no

uncertainty associated with the window function width per say, and the uncertainty on the

ridge slope is itself small, let us simply consider w2
c = w2 − w2

o , where wc is the corrected

width, w the measured width and wo some offset width with negligible uncertainty. Error

propagation gives

δwc =
w

wc
δw (5.17)

hence a large error magnification when wc ≪ w. Therefore, only when the relative error

on the corrected width was smaller than 1/3 were the corrected widths considered to be

valid.

Two potential sources of systematic errors in the mode width estimates should be ad-

dressed. First, any systematic errors in the frequency splitting measurements lead to

corrupted FWHM. Indeed, since we measure the FWHM of the collapsed spectra, an im-

proper collapsing due to a corrupted frequency splitting estimate will lead to a widened

collapsed ridge, hence an overestimate of the modal FWHM. Secondly, the simple-minded

nature of the “deconvolution” procedure will leave some residual systematic errors in the

corrected FWHM. More quantitatively, an error in the frequency splitting, used for the

collapsing will correspond to an error in the frequency shift of the order of m δ(∆ν/L),

hence a potential systematic error on the order of 2 µHz when considering m = ℓ = 500

and δ(∆ν/L) ≈ 2 nHz. Similarly, since sdν/dℓ is on the order of 10 µHz, the residual
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systematics associated to the leakage “deconvolution” may not be much larger than a few

µHz. In both cases, the potential systematics remain an order of magnitude smaller than

the FWHM, except for low-degree and low-frequency modes.

5.3 Comparisons with Previous Measurements

5.3.1 High-Resolution Results

As for the splittings, we have limited ourselves to comparing the low- and intermediate-

degree, high-resolution frequency set to the most contemporary data set available, namely

a preliminary release of modal frequencies based on the 1988 BBSO observations (3 month

run). The frequency differences between both sets are shown Figure 5.13 and they average

to 52.2 ± 197.3 nHz (mean ± r.m.s., with a 5σ rejection). No significant dependence

of the frequency differences with frequency or degree is present (regression coefficients:

with frequency ρν = −0.062, with degree ρℓ = −0.046). If we compare the ratio of the

differences to their uncertainties (i.e. ∆ν/σ, where σ is the largest uncertainty given in

the two sets for each mode), then the σ-weighted differences average to 1.02± 3.12.

While the intrinsic scatter and the uncertainties in our measurement is larger than in the

BBSO study, as the respective observing run lengths would predict, marginally significant

systematic differences between the two sets at the ∼ 50 nHz level can be detected.

On a strictly qualitative level, the comparison of the modal width and total power with

published values (see for instance Figure 3 in Libbrecht, 1988) shows good agreement

of the overall frequency dependence between the results of the present study and these

measurements.
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Figure 5.13: Modal frequency differences between BBSO 1988 set and the present study high-
resolution modal frequencies, as a function of degree (lower panel) and as a function of frequency
(upper panel).
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5.3.2 Low-Resolution Results

Contrary to the low- and intermediate-degree results, there is to this date no contemporary

high-degree measurements available for direct comparison. Nevertheless a set of high-

degree frequencies, based on two distinct 1-day-long runs acquired in the summer of 1987,

has been distributed as preliminary results and preprints by the Caltech group (Libbrecht

et al., 1990). Note that the earlier analysis by the same group leading to high-degree

modes (30 ≤ ℓ ≤ 1320, Libbrecht and Kaufman, 1988) has been since discarded by these

authors as being contaminated by systematics on the order of 10–12 µHz (Libbrecht et al.,

1990) and will therefore not be considered here.

Modes for 140 < ℓ ≤ 400 have been measured by the Caltech group from ridge fitting

to m-averaged spectra based on 9.5 hours of full-disk intensity measurements. Gaussian

profiles with a background term were fitted to the ridges, and frequency centroids of the

Gaussian fits corrected for power density distribution asymmetries. Image scale error

correction was deemed unnecessary by the authors of that study (see further discussion in

Libbrecht et al., 1990). Mode frequencies were then binned over 5-ℓ wide bins.

For 400 < ℓ ≤ 1860 mode frequencies were estimated from 10 hours of doppler mea-

surements of a portion of the solar disk. Using a plane wave approximation, a three-

dimensional Fourier transform was applied to these disk-center data. The spectra were

corrected for rotational frequency shifts and averaged along constant spatial frequencies,

producing spectra similar to m-averaged spectra obtained with the more rigorous spher-

ical harmonic decomposition procedure (see further details in Libbrecht et al., 1990 and

Hill, 1988). Ridge centroids were estimated by fitting a series of Gaussian profiles (i.e. one

for each visible ridge and one as an overall background term) and a constant background

term. The overlap region between ℓ ≤ 140 and ℓ ≤ 400 was used to calibrated the spatial

frequency scale, and a cubic spline based interpolation was then performed to estimate
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set a set b both sets

∆ν (µHz) 0.60±1.95 9.82±7.69 2.00±4.51
∆ν/σ 2.13±3.85 1.26±1.60 1.89±3.57

average ± r.m.s., with a 5 σ rejection
set a: Full-disk intensity measurements, 318 overlapping modes (145 ≤ ℓ ≤ 400)

set b: Disk-center doppler measurements, 67 overlapping modes (180 ≤ ℓ ≤ 600)

Table 5.1: Comparison of high-degree modal frequencies with BBSO measurements

modal frequencies at integral values of ℓ.

Figure 5.14 presents comparisons of our low-resolution frequencies to the BBSO results and

Table 5.1 presents the average and the r.m.s. of these differences. Note that an ℓ-binning

comparable to the BBSO set was not performed for our data set6.

Figure 5.14 and Table 5.1 indicate clearly that significant differences between both sets are

present. When comparing our results to the the intermediate spatial resolution full-disk

measurements, a definite frequency dependent pattern of the differences is present, of some

8 µHz peak to peak in amplitude, while overall the differences average to some 0.6 µHz,

and no significant trend with ℓ can be observed. Since this frequency dependent pattern

is similar to the frequency dependence of one of the terms used in the power distribution

asymmetry correction (namely ∂ logP/∂ν since the Caltech group used the approximation

d logP/dℓ ≈ ∂ logP/∂ν×∂ν/∂ℓ+∂ logP/∂ℓ and this term was estimated using an ad hoc

procedure), we are tempted to attribute these difference to some incompleteness of the

power distribution asymmetry correction performed on the BBSO set.

When comparing our results to the disk-center measurements, a systematic difference of

some 9 µHz is observed. This difference is consistent with the quoted potential systematic

errors present on the BBSO set and is on the order of the quoted uncertainties. Notice

also that a less pronounced frequency dependence, similar in shape but with opposite

curvature, can be observed. As for the BBSO full-disk measurements we are tempted to

6Considering the amplitude of the differences, such binning would not modify significantly the
comparison
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Figure 5.14: Modal frequency difference between BBSO high-degree measurements based on
two distinct one-day-long observation runs at intermediate (squares) and high spatial resolution
(triangles) and the high-degree, low-resolution frequencies from the present study. Notice that the
frequency scale is some 30 times larger than it was in Figure 5.13.
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attribute this discrepancy to uncorrected systematics in the BBSO set. Moreover, the

fact that these frequency-dependent discrepancies present opposite curvatures when our

unique set of frequencies is compared to two distinct sets of measurements confirms that

the source of these differences lies with remaining systematics which are not accounted for

adequately in the BBSO sets.

Finally let us point out that the comparison for the overlapping range in ℓ of our low

spectral resolution estimates with our high spectral resolution measurements indicated

residual differences on the order of 0.08 µHz, while the comparison of our high resolution

measurements with independent contemporaneous measurements indicated a remarkable

agreement between the two sets down to the 0.05 µHz level, with in both cases no sig-

nificant trends with frequency. Therefore, the source of the discrepancies at intermediate

and high degrees is on that basis also most likely due to remaining systematic errors that

we believe are present in the BBSO frequency sets.

In contrast to all previous estimates of intermediate- and high-degree modal frequencies, we

were able in the present study to derive from the same set of observations resolved modal

frequencies at low and intermediate degrees as well as estimates of modal frequencies at

intermediate and high degrees. Moreover, our measurements are based on a significantly

longer observing run than are all of the previous similar observations. Therefore, we are

confident that any remaining systematic errors present in our set of intermediate- and

high-degree frequency estimates is most likely to be below some 0.2 µHz.

5.4 Comparison with Theory

Figure 5.15 compares the observed modal frequencies to theoretical frequencies computed

from a standard solar model (Korzennik and Ulrich, 1989) where the difference between

the theoretical modal frequencies and the observed ones is plotted as a function of mode
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frequency and as a function of spherical harmonic degree, ℓ, respectively. The extension

of such a comparison to high-degree modes indicates that on one hand the overall trend

of the dependency with frequency of the differences between observation and theory is

extended to higher frequencies, namely an increase of the differences with frequency that

reaches some 30–50 µHz around 5000 µHz. On the other hand, the comparison indicates

that at high degree and high frequency the differences increase with degree as well. Notice

that the differences corresponding to the f-mode present the opposite trend as a function

of degree, namely a decrease with ℓ, while the trend with frequency is not very different

that for the p-modes.

Despite the fact that the disagreement between theoretical and observed solar oscillations

is significant when compared to the observational uncertainties, these discrepancies are

small in relative terms since they remain on the order of one to two percent. By contrast,

there is no definite theoretical predictions of solar oscillation amplitudes and linewidths

since the excitation and damping mechanisms themselves have not yet been unambiguously

identified. While the discussion of the possible excitation and damping mechanisms is

beyond the scope of this study, we will now present some related results, namely the total

energy per mode and the mode lifetimes.

The mode energy can be estimated from the product of the corrected modal total power

by the mode mass, Mn,ℓ, since the mode mass is defined as to represent the mode kinetic

energy divided by the mode mean square surface velocity, hence

Mn,ℓ =
1

v2surf

∫

1

2
(ρv2 +

c2ρ′

ρo
) dV (5.18)

where v is the mode radial velocity eigenfunction, ρ′ the density perturbation eigenfunction

and ρo the unperturbed density. The surface normalization, (i.e. the location of vsurf),

has been selected as to represent the height in the atmosphere where the contribution

functions of the sodium D lines are the most significant (Schleicher, 1976), namely 500

km (or τ5000 = 3× 10−4). The resulting estimates of the modal energy based on the low-
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Figure 5.15: Comparison of observed frequencies with theoretical frequencies computed with a
standard solar model. The differences based on the low- and intermediate degree modes computed
from the high-resolution spectra are indicated by triangles, while the differences based on the
intermediate- and high-degree frequencies computed from the low-resolution spectra are indicated
by squares. The differences corresponding to the f-modes are indicated by filled squares. The
upper panel shows these differences as a function of frequency while the lower panel shows them
as a function of spherical harmonic degree.
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resolution total modal power as a function of frequency and as a function of degree are

shown in Figure 5.16. Figure 5.16 indicates that the total energy per mode decreases with

degree, by a factor ∼ 7 between ℓ = 100 and ℓ = 400. This result is not very dissimilar

from an estimate based on disk-center measurements, obtained of Kaufman (1988), who

measured a decrease by a factor ∼ 5 between ℓ = 200 and ℓ = 700. Such a decrease would

invalidate energy equipartition between the modes and the convective turbulence eddies,

since the energy equipartition would imply an modal energy independent of degree.

The mode lifetime (i.e. the e-folding decay time) is simply given by

Tn,ℓ =
2

wn,ℓ
(5.19)

and provides some measure of the cavity quality factor. Therefore, we have attempted to

correlate the observed modal lifetimes to potential indicators of the cavity quality factor.

We have used as potential indicators of the cavity quality factor the modal frequency, the

inner turning point, the mode mass, and the turbulent pressure overlap integral.

We have defined a “turbulent pressure overlap integral” as

Xc =

∫

ρov
2
turb ρoξ

2
r r

2 dr
∫

ρoξ
2
r r

2 dr
(5.20)

where ρv2turb represents the turbulent pressure in the solar convection zone. If turbulent

pressure were the main source of mode excitation we would expect to see some correlation

between this overlap integral and the modal lifetime.

Quality factors for acoustic modes in equilibrium with turbulence, under different turbu-

lence excitation conditions and under different regimes, have been derived by Goldreich

and Kumar (1988). These expressions are, for free turbulence

Q(ν) ∼ 2πντH
M2f

2πντH <∼ Re3/4 (5.21)
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Figure 5.16: Total energy per mode, estimated from the product of the low-resolution modal total
power by the mode mass computed at an altitude of 500 km, as a function of frequency (upper
panel) and degree (lower panel).
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for forced turbulence

Q(ν) ∼ 2πντH
f

2πντH <∼ 1 (5.22)

Q(ν) ∼ (2πντH)3

f
1 <∼ 2πντH <∼ M−1 (5.23)

Q(ν) ∼ 2πντH
M2f

M−1 <∼ 2πντH <∼ Re3/4 (5.24)

and for turbulent pseudoconvection

Q(ν) ∼ 2πντH
M2f

2πντH <∼ Re3/4 (5.25)

where τH represent the eddies lifetime and f the fraction of the volume that is maintained

in a steady state of homogeneous, isotropic turbulence (f ≤ 1), while M is the Mach

number. Note that in each case the quality factor increases with frequency, with different

power laws for different regimes.

Modal lifetimes, estimated from the intermediate- and high-degree, low-resolution FWHM

are presented Figure 5.17 as a function of frequency, ν, inner turning point, rt, the mode

mass, M , and the turbulent pressure overlap integral, Xc, in bi-logarithmic plots (except

for the frequency and inner turning point).

Several remarkable features can be noticed in Figure 5.17. First, for none of our indicators

does the low-frequency, long-lifetime modes present any form of correlation. While these

are the modes which are the most susceptible to residual systematic errors, since the

associated corrections were the largest for these modes, they may indicate the presence of

two distincts regimes, which may in turn explain the significant difference of modal width

between the low-degree and the high-degree modes. Secondly, the short-lived (i.e. less

than 20 h) and high-frequency (i.e. above 3 mHz) modes present significant trends with

the frequency and the turbulent pressure overlap integral, and a remarkable correlation

with the mode mass. As for the low-degree modes, we observe a decrease of the mode
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Figure 5.17: Lifetime correlations plots: modal lifetimes as a function of frequency (lower left
panel), inner turning point (lower right panel), turbulent pressure overlap intregral (upper left
panel), and mode mass (upper right panel).
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lifetime with frequency, but with a less pronounced frequency dependence, since for low-

degree modes (i.e. ℓ ∼ 20) the observed linewidths increase by a factor ∼ 10 between 3 and

4 mHz (Libbrecht, 1988), while we observe a drop of the modal lifetimes for high-degree

modes (ℓ > 100) by only a factor ∼ 5, a value more consistent with the variation observed

at low ℓ above 4 mHz. In both cases, the observed lifetime decreases with frequency, in

contradiction to the prediction based on the quality factors mentioned above.

The overall trend of the modal lifetimes as a function of Xc indicates a qualitative agree-

ment with the assumption that the turbulent pressure may be exciting the oscillations,

namely an increase of the mode lifetime for larger values of the overlap integral. Never-

theless, Figure 5.17 do not really indicates a correlation per say, between T and Xc, hence

this qualitative agreement may be purely fortuitous. On the other hand, a remarkable cor-

relation of the mode lifetime with the mode mass can be observed in that figure. Indeed,

for these short-lived, high-frequency modes, the observed lifetimes vary proportionally to

the mode mass. This almost linear dependency with the mode mass of the modal lifetime

can be interpreted in simple terms as follows: for a uniform excitation mechanism and a

uniform damping mechanism near the surface, the energy stored in each mode would be

proportional to the mode mass, while the energy loss would be uniform, hence the lifetime

should be proportional to the mode mass.
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Chapter 6

Internal Rotation Rate

As mentioned earlier, the dominant contribution to frequency splitting of the solar p-mode

frequencies is the solar rotation. We present in the following sections a more formal de-

scription of the rotationally induced frequency splittings, and the inverse problem that

relates these splittings to the internal rotation rate. We then describe the inversion tech-

niques we used to solve this inverse problem and present the resulting rotation rate as a

function of depth in the equatorial regions, deduced from the frequency splittings mea-

surements determined in the present study.

We also present inverted rotation rate profiles obtained by consolidating the present study

set of frequency splittings with low- and intermediate-degree contemporary frequency split-

tings estimated from observations carried out at the Big Bear Solar Observatory by the

Caltech group (Libbrecht et al., 1990). Finally, we discuss some of the implications re-

sulting from our inverted profile in relation to solar dynamo theory, global circulation

predictions, and evolutionary models of rotating stars.
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6.1 Theoretical Background

Solar rotation is the dominant perturbation that lifts the azimuthal degeneracy of the

p-mode eigenfrequencies by breaking the spherical symmetry, hence inducing rotational

frequency splittings. In terms of traveling waves, modes propagating in the sense of the

rotation are shifted to higher frequency while mode propagating in the opposite direction

are shifted to lower frequency, hence the frequency difference (i.e. the frequency splitting),

is related through some integral function, to the rotation rate in the region sampled by

that mode.

Since different modes sample different parts of the solar interior, the accurate measurement

of frequency splittings for a large set of modes that adequately sample the solar interior

allows to infer the internal solar rotation rate as a function of depth and latitude.

6.1.1 Rotational splittings

The frequency splitting of a nonradial oscillation mode, νn,ℓ, induced by slow differential

rotation, Ω(r, θ) ≪ 2πνn,ℓ, is given by (Hansen et al., 1977)

νn,ℓ,m − νn,ℓ,0 = −m

2π

Rn,ℓ,m

Jn,ℓ,m
(6.1)

where

Rn,ℓ,m =
1

Cℓ,m

∫ R⊙

0

∫ π

0
ρo(r)Fn,ℓ,m(r, θ) Ω(r, θ) r2 dr d(cos θ) (6.2)

Fn,ℓ,m =
[

−ξ2r,n,ℓ(r) + 2 ξr,n,ℓ(r) ξh,n,ℓ(r)
]

Pm
ℓ

2(cos θ) (6.3)

+ ξ2h,n,ℓ(r)

[

2Pm
ℓ

dPm
ℓ

dθ

cos θ

sin θ
− (

dPm
ℓ

dθ
)2 − m2

sin2 θ
Pm
ℓ

2

]

(6.4)

Jn,ℓ =

∫ R⊙

0

[

ξ2r,n,ℓ(r) + ℓ(ℓ+ 1)ξ2h,n,ℓ(r)
]

ρo(r) r
2 dr (6.5)

Cℓ,m =
2

2ℓ+ 1

(ℓ+m)!

(ℓ−m)!
(6.6)
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and where ξr,n,ℓ and ξh,n,ℓ are respectively the radial and horizontal displacement unper-

turbed eigenfunctions, ρo the unperturbed density, Pm
ℓ associated Legendre polynomials

and θ the co-latitude.

After integration by part with respect to the co-latitude, θ, (see Cuypers, 1980), Rn,ℓ,m

can be rewritten as

Rn,ℓ,m =
1

Cℓ,m

∫ R⊙

0

∫ π

0
Pm
ℓ

2(cos θ) ρo(r) [Gn,ℓ(r) + S(r, θ)] Ω(r, θ) r2 dr d(cos θ), (6.7)

where

Gn,ℓ = ξ2r,n,ℓ(r)− 2 ξr,n,ℓ(r) ξh,n,ℓ(r) + (ℓ2 + ℓ− 1)ξ2h,n,ℓ(r) (6.8)

S(r, θ) =
1

Ω(r, θ)

(

3

2

∂Ω

∂θ
cot θ +

1

2

∂2Ω

∂θ2

)

(6.9)

If we may neglect the contribution from the nonlinear term S, namely when the rotation

rate varies slowly with latitude (∂Ω/∂θ ≪ Ω), Equation (6.1) can be rewritten as

∆νn,ℓ,m = −m

2π

∫ R

0

∫ +1

−1
P̃m
ℓ

2
(x)Kn,ℓ(r) Ω(r, x) dr dx (6.10)

where ∆νn,ℓ,m = νn,ℓ,m − νn,ℓ,0, P̃m
ℓ are normalized associated Legendre polynomials,

x = cos(θ), and Kn,ℓ unimodular rotational kernels, defined by

Kn,ℓ(r) =
1

Jn,ℓ
Gn,ℓ(r) ρo(r) r

2 (6.11)

Equation (6.10) clearly indicates that the frequency splittings represent some weighted

average, over depth and latitude, of the rotation rate. In other words, any frequency

splitting contains information on the internal rotation rate only at the depths where the

rotation kernel is significantly different from zero and at latitudes where the associated

Legendre polynomial is significantly different from zero as well.

From the nature of the solar acoustic cavity, each p-mode, hence its associated rotational

kernel, samples a definite region of the solar interior confined between the surface and the
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inner turning point. The character of the solar stratification causes the location of the

inner tuning point to be a slow function of frequency but a steep function of degree. This

is illustrated in Figure 6.1, where rotational kernels, for a selection of degrees, ℓ, and radial

orders, n, are presented. Notice that the larger the degree or the lower the frequency (i.e.

the lower the radial order), the shallower is the region sampled by that mode.

If we consider only the sectoral splittings we can rewrite Equation (6.10) as

∆ν|sectoral
2ℓ

=
νn,ℓ,−ℓ − νn,ℓ,+ℓ

2ℓ
=

1

2π

∫ R

0
Kn,ℓ(r) Ω(r) dr (6.12)

where

Ω(r) =

∫ +1

−1
[P̃ ℓ

ℓ (x)]
2Ω(r, x) dx (6.13)

and

P ℓ
ℓ = (−)ℓ(2ℓ− 1)!!(1− x2)ℓ/2 (6.14)

Notice that Ω is an average over latitude of the rotation rate, weighted by a symmetric

and sharply peaked function centered around the equator. While Ω is not the equatorial

rotation rate per say, it provides a good estimate of the equatorial value since the weighting

function becomes more sharply peaked as the mode penetration decreases and since the

differential rotation is not expected to extend beyond the convection zone (see Thompson,

1990 and Korzennik et al., 1988). Table 6.1 provides a quantitative illustration of the

azimuthal extension of Ω as a function of degree and the typical location of the inner

turning point associated to it.

6.1.2 Inversion Techniques

Solving Equation (6.10) or Equation (6.12) for the rotation rate, Ω, defines a classical

inverse problem, namely that an unknown function (the rotation rate) is related through

a set of integral equations to a set of observables (i.e. the frequency splittings). In a more
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Figure 6.1: Selection of rotational kernels, Kn,ℓ, as a function of radius, as defined by Equa-
tion (6.11). The corresponding spherical harmonic degree ℓ and radial order n are indicated in the
upper left corner of each panel.
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Figure 6.1 (continued)
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ℓ ϑa
FWHM Rt/R

b
⊙

10 15.0 0.283
20 10.6 0.443
50 6.74 0.733
100 4.77 0.880
200 3.37 0.957
500 2.13 0.989

aangular full width at half maximum, in degree, of (1− x2)ℓ where x = sin(ϑ), and ϑ is the latitude
binner turning point computed for ν = 3.3 mHz

Table 6.1: Azimuthal extension of Ω as a function of spherical harmonic degree ℓ, and typical
corresponding inner turning point.

abstract formulation, for a one dimensional problem, we shall write

yk ± σk =

∫ 1

0
Kk(r)x(r) dr for k = 1, . . . , N (6.15)

where the yk represent a set of observables, and σk their uncertainty, while Kk(r) represent

the associated unimodular kernels and x(r) the unknown function, defined over the domain

r ∈ [0, 1].

In order to pose the problem in a dimensionless frame, let us rewrite Equation (6.15) as

yk
σk

≃
∫ 1

0

Kk(r)xs
σk

x(r)

xs
dr (6.16)

or simply

y′k ≃
∫ 1

0
K ′

k(r)x
′(r) dr for k = 1, . . . , N (6.17)

where xs is selected to bring x′(r) ≈ 1. We will from now on assumed that the scaling from

Equation (6.15) to Equation (6.17) has been performed and will drop the prime symbols.

Since in all practical cases the set of observables is finite and the observables are known

to a finite precision, and in most cases the set of kernels associated with the available set

of observables does not completely sample the domain of the unknown function, such an

inverse problem is ill-posed. Indeed, on one hand, there will be a set of possible solutions

xA whose contribution to the observables is null, namely

∫ 1

0
Kk(r)xA(r) dr = 0 for all k = 1, . . . , N (6.18)

171



These functions define the anihilator space of the operator defined by our set of N integral

equations. If the anihilator has a non-zero dimension there is no unique solution to the

inverse problem. In more practical terms, the anihilator arises from the fact that the set

of kernels associated to the the set of available observables does not sample completely the

domain of the unknown function. On the other hand, since the observables are tainted by

errors, there may not exist a solution that actually satisfies the set of equations exactly,

hence neither the existence nor the uniqueness of the solution is guaranteed. Finally,

note that the numerical implementation of the problem or the numerical estimation of the

kernels may result in some cases to contribute to the actual size of the anihilator space.

Generalized inverse theory provides the framework to deal with inverse problems and has

been extensively discussed in a wide variety of fields, from geoseismic analysis to image

reconstruction. A complete review of inversion techniques from a terrestrial perspective

can be found in Parker (1977) and references therein, and from a solar perspective in

Gough (1985) and Christensen-Dalsgaard et al. (1990).

The general procedure to solve the linear problem defined by Equation (6.17) is based on

the construction of an inverse operator H, to obtain an estimate of the solution, x̂, at

some targeted radius, rt, from a linear combination of the observables yk, namely

x̂(rt) =
∑

k

Hk(rt) yk (6.19)

it follows from the definition of the problem that

x̂(rt) =

∫ 1

0

(

∑

k

Hk(rt)Kk(r)

)

x(r) dr (6.20)

def
=

∫ 1

0
A(r, rt)x(r) dr (6.21)

where A(r, rt) is the resolution kernel, while

ŷk =

∫

Kk(r)x̂(r) dr (6.22)
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and the variance of the solution is given by

σ2(x̂)|rt =
∑

k

H2
k(rt) (6.23)

since we consider that the problem has been rescaled according to Equation (6.16), hence

σ(yk) ≡ 1.

The procedure of determining the inverse operator, H, for a set of target radii, rt, is

specific to each inversion method, but we can in all generality state that x̂ will be a good

estimate of the solution at or near rt if

1. the resolution kernel is a narrow function localized around rt, namely A(r, rt) ≈

δ(r − rt)

2. the solution represents the observables, namely ŷk ≈ yk for all k = 1, . . . , N

3. the error magnification remains small, namely σ(x̂) ≪ 1.

Since the inverse problem is ill-posed, each inversion method provides an estimate of the

solution based on some implicit or explicit assumption about the unknown function, x(r),

to condition the problem or to optimize one of the three conditions mentioned above. We

have used three different methods, namely the spectral expansion method, the piecewise

constant constrained least-squares method and the optimal averaging kernel method to

solve the inverse problem relating the p-mode rotational splittings to the solar internal

angular velocity, as defined by Equation (6.12).

The spectral expansion method (or single value decomposition method), uses a single

value decomposition to compute the generalized inverse that provides the smallest-norm

least-squares solution. To limit the error magnification the single value decomposition is

truncated hence overestimating the size of the anihilator. This truncation performs some

trade-off between resolution and error magnification.
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The constrained least-squares method (or regularized method), adds to the standard least-

squares method some arbitrary constraint on the unknown function x(r). In practice a

smoothness constraint is used to condition (or regularize) the problem. The strength of

this constraint acts as a trade-off coefficient between resolution and error magnification.

The optimal averaging kernel method (or optimal resolution kernel), as its name indicates,

aims at minimizing the width of the resolution kernel. Since the problem is ill-conditioned

a trade-off between the resolution kernel width and the error magnification needs to be

preformed in the “optimization” process.

The Spectral Expansion Method

Since only a limited resolution can be achieved, let us first discretize Equation (6.17), and

consider that the solution can be written as

x(r) =
M
∑

i=1

xi φ(r, ri) (6.24)

with M ≪ N and φ(r, ri) a set of functions centered around r = ri (namely functions that

vary linearly from 0 to 1 for ri−1 < r ≤ ri and from 1 to 0 for ri < r ≤ ri+1 and are zero

otherwise). We can now rewrite Equation (6.17) as

yk =
∑

i

Kk,i xi for k = 1, . . . , N (6.25)

or using matricial notation

y = Kx (6.26)

where K is a N×M rectangular matrix. The generalized inverse (Lanczos, 1961; Jackson,

1972) provides the smallest-norm least-squares solution by performing the single value

decomposition (SVD) of K, resulting from the dual eigenvalue problem

Kv = λu (6.27)

KTu = λv (6.28)
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that defines a common set of p ≤ M ≪ N non-zero eigenvalues, λi, N eigenvectors ui and

M eigenvectors vi. This SVD allows the factorization of the matrix K as

K = UΛVT (6.29)

where Λ is a p×p diagonal matrix whose diagonal elements are the p non-zero eigenvalues,

λi, U is a N ×p matrix, whose columns are the eigenvectors ui associated with the p non-

zero eigenvalues andV is aM×pmatrix, whose columns are the eigenvectors vi associated

with the p non-zero eigenvalues.

This factorization can be inverted, since the matrices U and V satisfy the following rela-

tionships (see for instance Jackson, 1972)

UTU = VTV = Ip (6.30)

where Ip is the p× p identity matrix, and since the inversion of the diagonal matrix Λ is

trivial. The generalized inverse is thus given by

H = VΛ−1UT (6.31)

and the smallest-norm least-square solution given by

x̂ = Hy (6.32)

The error magnification will be given by

σ2(x̂) = HHT = VΛ−2VT (6.33)

or simply

σ2(x̂)|ri =
p
∑

j=1

(
Vi,j

λj
)2 (6.34)

hence small eigenvalues will introduce large error magnification. Moreover, in actual

numerical implementations, the distinction between small and null eigenvalues may be

blurred and the precise value of p not known.
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To limit the uncertainty on the solution a trade-off between resolution and error mag-

nification is performed by truncating the set of non-zero eigenvalues to the subset of q

eigenvalues larger than some fixed threshold (where q ≤ p) and a solution is computed

from only these q largest eigenvalues and their associated eigenvectors. Such a truncation

corresponds to considering the eigenvectors associated with the set of (p− q) small eigen-

values which are not included in the inverse operator as actually lying in the anihilator

space. By rescaling the problem according to Equation (6.17), a natural cut-off value near

unity can be used to truncate the set of eigenvalues. Alternatively, the cut-off value may

be chosen at each target radius to limit the error magnification below a fixed threshold.

The discretization on a given grid of the unknown function is a delicate operation that

needs to be handled with caution. Indeed, the number and location of the mesh points of

the discretization grid should match the resolution and the effective number of degrees of

freedom of the observable data set. Since these are not known a priori, we have adopted

an iterative approach to the definition of the discretization grid where the mesh points

are redistributed according to the resolution indicated by the resolution kernels obtained

at each iteration.

The Piecewise Constant Constrained Least-Squares Method

As for the spectral expansion method, let us first discretize Equation (6.17), and consider

x(r) =
M
∑

i=1

xi ϕ(r, ri) (6.35)

with M ≪ N and ϕ(r, ri) a set of functions centered around ri respectively, and given by

ϕ(r, ri) =











1 if 1
2
(ri−1 + ri) ≤ r < 1

2
(ri + ri+1)

0 otherwise
(6.36)

We can rewrite Equation (6.17) as

yk =
∑

i

Kk,i xi for k = 1, . . . , N (6.37)
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or using matricial notation

y = Kx (6.38)

where K is a N ×M rectangular matrix. The least-squares solution to Equation (6.38),

x̂, is the solution that minimizes the error function χ2, namely

χ2 =
1

N

∑

k

(yk −
∑

i

Kk,ix̂i)
2 (6.39)

hence it is given by

d(χ2)

dx̂j
= 0 for j = 1, . . . ,M (6.40)

thus

2

N

∑

k

(yk −
∑

i

Kk,i x̂i)Kk,j = 0 for j = 1, . . . ,M (6.41)

or in matricial form

KTy = KTKx̂ (6.42)

Notice that the matrix KTK is a M ×M square matrix, whose inverse may not exist, and

in actual numerical implementations is most likely to be ill-conditioned.

To regularize the problem, let us add a constraint on the solution (i.e. a smoothness

constraint) that we shall write as

F{x} =
∑

i

(
∑

j

Ci,jxj)
2 (6.43)

and compute the solution which minimizes χ2 + λF , where λ is an arbitrary coefficient

that controls the strength of the constraint.

Introducing the constraint in Equation (6.40) leads to

KTy = (KTK+ λNCTC)x̂ (6.44)

It is now the matrix G = KTK + λNCTC, a M × M square matrix whose inverse is

computed. G will not be any more ill-conditioned assuming λ large enough, and the
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inverse operator H, for a given λ, is given by

Hλ = G−1
λ KT (6.45)

While the constraint can be arbitrary, as long as it can be expressed by Equation (6.43),

it should be appropriate, and will influence the nature of the possible solutions. The most

common and natural constraint is a smoothness constraint, namely to minimize the square

of the norm of the first or second derivative. Hence by forcing the solution to be smooth,

one reduces the resolution but limits the error magnification. Here it is the parameter λ

that, by controlling the strength of the constraint, acts as a trade-off coefficient between

resolution and error magnification.

In the first derivative implementation of the constraint, F{x} becomes

F{x} =

∫
(

dx

dr

)2

dr (6.46)

where the derivative is given by a numerical estimate, namely a simple forward difference

scheme, or

dx

dr
=

xi+1 − xi
ri+1 − ri

(6.47)

and the constraint becomes

F{x} =
M−1
∑

i=1

(
xi+1 − xi
ri+1 − ri

)2(ri+1 − ri) (6.48)

which in turn defines the matrix C according to Equation (6.43).

In the second derivative implementation, we have this time

F{x} =

∫

(

d2x

dr2

)2

dr (6.49)

where the derivative is also given by a numerical estimate, namely

d2x

dr2
=

xi+1 − 2xi + xi−1

(1
2
(ri+1 − ri−1))2

(6.50)
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and the constraint becomes

F{x} =
M−1
∑

i=2

(
xi+1 − 2xi + xi−1

(1
2
(ri+1 − ri−1))2

)2
1

2
(ri+1 − ri−1) (6.51)

which in turn defines the matrix C according to Equation (6.43).

The Optimal Averaging Kernel Method

In the optimal averaging kernel method, the emphasis is put on the resolution and the

method attempts to optimize the “deltaness” of the resolution kernels (also called averag-

ing kernels). While a complete discussion of this optimization process from a geoseismic

point of view can be found in Backus and Gilbert (1970), we limit ourselves here to

presenting some highlights of this process so as to illustrate the key points of the method.

Since a solution, x̂, at rt, is constructed from some linear combination of the observables,

the resolution kernel is simply given by (see Equations 6.19 to 6.21)

A(r, rt) =
∑

k

Hk(rt)Kk(r) (6.52)

By minimizing the spread of A(r, rt) around rt, the “optimal” resolution kernel will be

obtained, but since the problem is ill-conditioned, a trade-off between resolution and error

magnification is required.

By adopting a measure of the resolution kernel width (i.e. its spread around rt), namely

s(A, rt) = 12

∫ 1

0
(r − rt)

2A2(r, rt) dr (6.53)

and under the constraint that the resolution kernel remains unimodular, the inverse op-

erator H is computed by minimizing the width of the resolution kernel and the error

magnification. Since both minimizations cannot be achieved simultaneously, a trade-off

coefficient θ is introduced, and one minimizes the quantity

s(A, rt) cos θ + wσ2(x̂) sin θ (6.54)
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where the somewhat arbitrary scaling factor w is introduced to scale the trade-off curve

(error magnification as a function of spread) with respect to the trade-off angle θ. Since the

problem has been rescaled according to Equation (6.17), the spread and error magnification

are on the same order of magnitude and w can be set to unity.

The inverse operator is then given by

Hθ =
W−1

θ u

uW−1
θ u

(6.55)

where

uk =

∫ 1

0
Kr(r) dr (6.56)

Wθ = S cos θ + IN sin θ (6.57)

IN is the N ×N identity matrix and

Sk,k′ = 12

∫ 1

0
(r − rt)

2Kk(r)Kk′(r) dr (6.58)

Hence, as the trade-off angle θ is increased, one reduces the error magnification by in-

creasing the resolution kernel width.

Practical Considerations

Since we have used a cross-correlation procedure to estimate the frequency splittings,

Equation (6.12) needs to be averaged over the radial order n. Hence, we have n-averaged

the rotational kernels by computing for each degree, ℓ, the weighted mean of the individual

kernels, using for the weight a Lorentzian profile, centered around 3.3 mHz with a FWHM

of 3.0 mHz as to represent the power distribution in the 5-minute band. The individual

kernels were computed using a standard solar model (Korzennik and Ulrich, 1989) with

an adiabatic non-magnetic resonant analysis code based on the Ulrich formalism (Ulrich,

1970).
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From a strictly numerical standpoint some significant differences between each method can

be noticed. In the interactive implementation of the spectral expansion (ISE), a unique

SVD for the M eigenvalues (where M ≪ N) and their associated eigenvectors (u and v)

needs to be computed for a given radial discretization. From that set of eigenvalues and

eigenvectors the estimate of the solution for any given trade-off value can be computed from

a straightforward product of matrices. Since the SVD is the computationally intensive

part of the procedure, the ISE presents the advantage of not requiring a lot of extra

processing to explore the trade-off curve. On the other hand, since we have adopted an

iterative approach for the determination of the radial discretization, the SVD needs to

recomputed at each iterative step.

One of the main advantages of the constrained least-squares method (CLS) is it numerical

simplicity. Indeed, for a given discretization grid and a given trade-off parameter, only a

straightforward inversion of a M ×M matrix needs to be carried out. While this inversion

needs to be done for any given trade-off value, the numerical burden of the CLS method

is by far the smallest.

On the contrary, the optimal averaging kernel method (OAK) is the most computationally

intensive method. Indeed, the matrices S and W need to be computed for each trade-

off value and at each location, rt, where an estimate of the solution is sought. On the

other hand, since no radial discretization is required the nature of the solution for a given

trade-off is guaranteed to be independent of the set of target radii selected to describe

the unknown function. Note that the matrix S can be written as sum of three matrices

independent of rt by developing the square in the integral, namely

S = r2tSo − 2rtS1 + S2 (6.59)

where

(Si)k,k′ = 12

∫

riKk(r)K
′
k(r)dr (6.60)
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This reduces the computation of S, hence of W, at each rt to a simple matrix summation

once the Si matrices have been computed. In contrast to the two others methods, the

OAK method still requires a matrix inversion at each target radius for any given trade-off

parameter.

Finally, let us point out that the resolution kernels, A(r, rt), are the key elements in the

interpretation of any given inverse solution. Indeed, since there is no unique solution to an

ill-conditioned inverse problem, it is through the localized nature of the resolving kernel

that any estimate of the solution at some target location, x̂(rt), can be judged as being a

good estimate of the “actual” unknown function at that location, x(rt). If the resolution

kernel is reasonably localized, its centroid, rc and its width w(rc) (i.e. the spread around

the centroid), given by

rc =

∫ 1
0 rA2(r) dr
∫ 1
0 A2(r) dr

(6.61)

and

w(rc) = 12

∫ 1

0
(r − rc)

2A2(r) dr (6.62)

will be a good characterization of the actual location and resolution of the estimate of the

solution. Therefore, we will in most cases present the resulting solutions as a function of

the resolution kernel centroid, rc, rather than the target radius, rt.

6.2 “Equatorial” Rotation Rate

Inversions of the solar internal angular velocity from p-mode frequency splittings based on

full-disk observations have been performed by various groups since reliable splitting mea-

surements have been available while more recent and more accurate splitting measurements

have prompted inversions as a function of depth and latitude (Christensen-Dalsgaard and

Schou, 1988; Korzennik et al., 1988). In all cases, the available splittings were restricted

to low and intermediate degree (5 ≤ ℓ ≤ 120) and were unable to provide reliable infor-
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mation in the subsurface regions (R > 0.85R⊙). On the other hand, high-degree splitting

measurements based on disk-center observations have prompted several attempts to infer

the subsurface rotation rate (Hill et al., 1988a; Hill et al., 1988b) but potential systematic

effects present in the splittings due to the disk-center nature of the observations have cast

some doubts on these results.

The high-resolution, full-disk measurements obtained at Mt Wilson Observatory (MWO),

as presented in this study, have provided the first opportunity of extending the set of

splittings used for an inversion from low- to high-degree modes. In order to assess and

demonstrate the specific contribution of the high-degree measurements we also present

inversion results obtained by using only the low- and intermediate-degree measurements.

We have limited ourselves in this study to inverting for the equatorial rotation rate since

our prime objective is to assess the contribution of the high-degree modes to the inverted

profile. Since, as discussed at length in Chapter 4, the latitudinal information for high-

degree splittings could not be satisfactorily estimated, we have judged it inappropriate to

attempt to infer any latitudinal information from such a data set. On the contrary, the sec-

toral measurements have proven to be more robust and while they still may be tainted by

some residual systematics, the significance of the general trends in this set is undoubtedly

real. Therefore, we have used the tesseral measurements at low and intermediate degree

(20 < ℓ ≤ 120), based on the high-resolution spectra, reduced to their sectoral equivalent

(a1 + a3 + a5), combined with the sectoral measurements at high degree (ℓ > 120), based

on the low-resolution spectra.

We also present inversion results obtained by consolidating the MWO frequency splittings

set with the contemporary BBSO frequency splitting set graciously provided by Libbrecht

prior to publication. Since the BBSO measurements are based on a singlet fitting pro-

cedure, these splittings were first reduced to n-averaged values comparable to the MWO

set. Since some radial resolution may be lost through the n-averaging process, we have
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also inverted the unaveraged BBSO set alone and combined with the MWO set.

6.2.1 MWO Measurements Alone

We have combined the sectoral equivalent (a1 + a3 + a5) splitting measurements obtained

from the high-resolution tesseral analysis for low and intermediate degree (20 ≤ ℓ <

120) with the corrected set of high-degree, high-resolution sectoral splitting measurements

estimated for 120 ≤ ℓ ≤ 600.

For the low- and intermediate-degree values an estimate of the uncertainty was computed

from the scatter to the polynomial fit in m/L. Since errors associated with sidelobe

contamination are most likely to be present (see discussion in Section 3.5.1) this value

underestimates the actual uncertainty, as the internal scatter of the measurements clearly

indicates. Therefore, we have simply multiplied these uncertainties by a somewhat arbi-

trary factor of 3 to account for all the potential sources of uncertainties.

In order to estimate uncertainties and increase the significance of the high degree mea-

surements, we have used 10-ℓ wide binned values for ℓ ≥ 120. The uncertainties were

here estimated from the r.m.s. of the scatter around the mean in each bin. Since at

high ℓ the variation with degree of the mode penetration diminishes, the ℓ-binning should

not significantly decrease the radial resolution while it substantially reduces some of the

computational requirements.

To demonstrate the effects on any estimate of the solution of the procedural details of each

inversion procedure we will present some intermediary results that illustrate the limitations

or strong points of each method. Therefore, some of the features in the rotation curves

which resulted from these intermediary solutions should not be considered as valid unless

they are explicitly stated as being significant.
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Figure 6.2 presents inverted profiles obtained from a initial choice of radial grid for each

method and for different trade-off coefficients, using the complete MWO set (namely

ℓ = 20, (1), 119 and ℓ = 126, (10), 596). Figure 6.3 presents the same inverted profiles,

but plotted as a function of the resolution kernel centroid rather than the targeted radius,

while Figure 6.4 shows a selection of resolution kernels associated with these profiles. This

initial radial grid choice consisted of r = 0, (0.1), 0.7, (0.05), 1 for the ISE method and

r = 0, (0.05), 0.4, (0.025), 0.9, (0.0125), 1 for the CLS and the OAK methods. These choice

were justified by our a priori knowledge that we should not expect a good resolution in

the deepest regions, and by a tendency in the ISE method for large oscillatory instabilities

for dense discretization grids.

Despite our coarse discretization, the ISE (for this initial radial discretization) presents

large oscillatory excursions and very poorly localized resolution kernels. It is precisely such

behavior that prompted us to adopt an iterative approach to the radial discretization.

The CLS results (1st and 2nd derivative, hereafter CLS1d and CLS2d respectively) and

the OAK curves present very similar features except for the innermost and outermost

points. Namely a sharp variation around r = 0.725 followed, as we are going towards the

surface, by a rapidly damped “hump” (as the trade-off coefficient increases, i.e. as the error

magnification decreases) while a second “hump”, located around r = 0.925 persists despite

the increase of the trade-off coefficients. Below r ≈ 0.6, as indicated when using the kernel

centroids to plot the inverted profiles, and by the nature of the rotation kernels themselves,

none of the inversion methods were able to construct a localized resolution kernel near

the targeted radius. It should be no surprise that the CLS1d “fills” the unresolved region

with a flat profile since for the limit λ → ∞ the CLS1d solution should be flat (i.e. first

derivative null everywhere). Similarly, since the limit solution for λ → ∞ of the CLS2d is

a straight line, the solution in the unresolved region for the CLS2d is almost linear when

plotted versus the target radii.
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Figure 6.2: Initial inverted rotation rate profiles, function of target radii. From bottom to top
profiles correspond to results from the ISE, CLS1d, CLS2d and OAK method respectively, while
the trade-off coefficient increases from left to right.
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Figure 6.3: Initial inverted profiles, function of kernel centroids. As for Figure 6.2, the profiles in
the panels from bottom to top correspond to results from the CLS1d, CLS2d and OAK method
respectively, while the trade-off coefficient increases from left to right. Since the initial results for
the ISE method presented very poorly localized kernels, we have not included them in this figure.
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Figure 6.4: Resolution kernels corresponding to the initial inverted profiles presented Figures 6.2
and 6.3. The arrow indicates the location of the corresponding targeted radius.
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Figure 6.4 (continued)
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Figure 6.4 (continued)
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Figure 6.4 (continued)
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Above r ≈ 0.975 the CLS and OAK solutions diverge. While a superficial inspection of

the resolution kernels, based solely on the kernel centroid location, would suggest that the

kernels may be adequately localized, a more careful inspection of the resolution kernels

themselves indicates the presence of a non-negligible secondary peak localized at the sur-

face. The presence of such large secondary peaks indicates the inability of the methods

to localize the resolution kernel near the targeted depth. This is easily explained by the

nature of the rotational kernels. Indeed, since all the modes are reflected at the surface,

the rotational kernels all have a significantly non-zero value just below the surface. There-

fore, there exists a region near the surface where no linear combination of the available

set of rotational kernels can have a small value at the surface and still be localized in that

region. The depth of this region can be estimated to be on the order of the penetration

depth of the shallower mode used in the inversion.

Results of the ISE with an adjusted discretization grid are shown in Figure 6.5 and a

selection of corresponding resolution kernels in Figure 6.6. The SVD truncation, for each

radius, was selected such as to limit the error magnification below a selected threshold (0.02

and 0.01 respectively) while keeping the largest possible number of eigenvalues. Despite

several attempts to adequately distribute a larger number of discretization radii, we were

unable to achieve a stable solution with more than 9 radii. Notice that the resolution

kernels remain poorly localized, or when localized, still display large excursions near the

surface. Therefore, the centroids of the resolution kernels do not provide a good estimate

of the actual location of the inverted solution, and the interpretation of the resulting

profiles becomes less straightforward. While some of the features seen with the other

methods are present, their significance on the sole basis of the ISE results could not have

been demonstrated.

Based on the resolution indicated by the preliminary inversion obtained for the CLS and

OAK methods, we have reassessed the location of our target radii and selected a trade-off
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Figure 6.5: ISE solution profile after adjustment of the discretization grid through an iterative
process. The SVD truncation, at each radius, was selected as to limit the relative error on the
solution below 0.01 (upper panel) and 0.02 (lower panel) respectively. The non-seismic “surface”
rotation rate are indicates by the long dashes, short dashes, and dot dashes lines for the doppler
feature rotation rate (Snodgrass and Ulrich 1990), the magnetic feature rotation rate (Snodgrass
1983) and the spectroscopic rotation rate (Snodgrass 1985) respectively.

193



Figure 6.6: Set of resolution kernels corresponding to the ISE solutions presented Figure 6.5.
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Figure 6.6 (continued)
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parameter that limit the error magnification without attenuating excessively the significant

features present in the inverted profiles.

Figures 6.7 to 6.9 present the resulting profiles, restricted to adequately localized values,

for the ClS1d, CLS2d and OAK methods, while Figures 6.10 to 6.12 present some selected

resolution kernels associated with these profiles. The direct comparison of the three pro-

files, presented in Figure 6.13, clearly indicates that, independently of the methods used,

the same features are present, with very similar amplitudes. Namely, these are a sharp

increase with radius of the rotation rate from some 435 nHz to some 465 nHz between

R = 0.65R⊙ and R = 0.80R⊙ followed by a plateau for 0.80R⊙ < R < 0.90R⊙, then a rise

up to some 470 nHz around 0.94 followed by a decrease with radius, with a slope that can

be reasonably extrapolated to a value compatible with the spectroscopic determination

of the surface rotation rate (452 nHz). Despite the fact that the inner turning point for

ℓ ≈ 600 is around 0.99R⊙, the present level of uncertainty of the high-degree splittings

prevented us from achieving adequately localized resolution kernels with either method in

the outermost 3% of the solar interior.

In order to illustrate the specific contribution from the high-degree modes, we have also

performed the inversion using only the low- and intermediate degree splittings (20 ≤ ℓ <

120). Figure 6.14 compares, for the same radial discretization and trade-off coefficient,

inverted profiles obtained with and without the high-degree modes. In order to illustrate

the degradation of the resolution kernels above 0.9R⊙ in the absence of high-degree modes,

a selection of resolution kernels for the CLS1d solution based solely on the low- and

intermediate-degree splittings is shown in Figure 6.15. Note that, as expected from the

penetration depth of the highest degree mode used for these inversions (namely, since the

inner turning point for ℓ = 120 is around 0.91R⊙), no localized resolution kernels could

be achieved above 0.9R⊙.

This comparison demonstrates that a) the features observed above 0.9R⊙ cannot be re-
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Figure 6.7: Solution obtained with the CLS1d method using MWO n-averaged splittings. As
for Figure 6.5, the non-seismic “surface” determination of the rotation rate are indicated by the
horizontal lines.

Figure 6.8: Solution obtained with the CLS2d method using MWO n-averaged splittings. As
for Figure 6.5, the non-seismic “surface” determination of the rotation rate are indicated by the
horizontal lines.
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Figure 6.9: Solution obtained with the OAK method using MWO n-averaged splittings. As
for Figure 6.5, the non-seismic “surface” determination of the rotation rate are indicated by the
horizontal lines.

solved without the high-degree modes, b) the uncertainty on the inverted profile is reduced

by the inclusion of the high degree splittings even in the deeper regions and c) the am-

plitude of the transition around 0.72R⊙ is underestimated by the OAK method in the

absence of high-degree splittings.

The instability present near 0.72R⊙, as indicated by a large oscillatory behavior of the

solution when the trade-off coefficient is reduced, suggests strongly the possibility of a

discontinuity in the rotation rate at a depth very comparable to the base of the convection

zone (i.e. 0.73R⊙ for the standard model, Bahcall et al., 1982).

6.2.2 MWO and BBSO Measurements Combined

Since the 1988 BBSO splitting measurements are based on a longer run and potentially

less contaminated by systematics, or if contaminated, are contaminated by systematics of
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Figure 6.10: Selection of resolution kernels corresponding to the solution presented Figure 6.7,
namely the CLS1d solution using the n-averaged MWO set.
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Figure 6.11: Selection of resolution kernels corresponding to the solution presented Figure 6.8,
namely the CLS2d solution using the n-averaged MWO set.
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Figure 6.12: Selection of resolution kernels corresponding to the solution presented Figure 6.9,
namely the OAK solution using the n-averaged MWO set.
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Figure 6.13: Direct comparison of inverted rotation rate profiles based on the MWO set alone, as
presented Figures 6.7, 6.8 and 6.9. The non-seismic determination of the “surface” rotation rate
are indicated as in Figure 6.5

a different nature, we have combined the MWO and BBSO set into a unique set, where

below ℓ = 60 the MWO measurements have been superseded by the BBSO values.

Results from n-averaged Splittings

The BBSO set of splittings was reduced to its sectoral equivalent (i.e. to the sum of the

odd-indexed coefficients) and n-averaged as described earlier. Figures 6.16 to 6.18 compare

the resulting inverted profiles for each method with the profiles based on the MWO alone

data set. As expected from the agreement between the two data sets (see Section 4.3.1),

these comparisons do not indicate any significant differences for the inferred profile in

the outer 20% of the solar radius. The only differences present are, a) a slightly better

resolution in the deeper regions as expected from the inclusion of lower degree modes, and

b) a systematic shift of the location of the potential discontinuity by some 2% in radius
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Figure 6.14: Comparison of profiles obtained using the MWO set alone, but with and without
high-degree modes (i.e. ℓ > 120), obtained with, from left to right the CLS1d, the CLS2d and the
OAK methods, respectively. The solutions, at same radial discretization and trade-off parameter,
obtained without the high degree modes (i.e. 20 < ℓ < 120) are connected by dashed lines.
The upper panel presents solutions obtained with a larger trade-off parameter than the solutions
presented in the lower panel.
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Figure 6.15: Resolution kernels corresponding to the CSL1d solution obtained using solely the
MWO low- and intermediate-degree (i.e. 20 < ℓ < 120) presented in the lower left panel of
Figure 6.14. Resolution kernels corresponding to the solution using the same method, radial
discretization and trade-off parameter, but using the complete MWO set (i.e. 20 < ℓ < 600) are
presented Figure 6.10. Notice the rapid degradation here of the resolution above r = 0.85.
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Figure 6.16: Comparison of inverted profile using MWO (dashed line) and combined n-averaged
BBSO-MWO (solid line) splittings, using the CLS1d method.

towards the center. The magnitude of the improvement in resolution introduced by the

low-degree modes is illustrated Figure 6.19 where the measure of the resolving width (as

defined by Equation (6.62)) is plotted as a function of the kernel centroid for each set and

each method.

Following Goode’s example (Goode et al., 1991), we have also attempted to allow for a

discontinuity in the inverted profile. Indeed, the CLS1d method gives us the possibil-

ity to lift the constraint at any given mesh point, namely, by introducing at a selected

depth a double mesh point at which no derivative is computed, hence not included in the

smoothness constraint. Unfortunately, the location of this discontinuity must be defined

a priori rather than being a free parameter fitted for. Figure 6.20 presents resulting in-

verted profiles when using 0.72R⊙, 0.73R⊙ and 0.74R⊙ respectively as a candidate for

the location of the discontinuity. The inversions were carried out using the MWO alone

and the BBSO–MWO combined sets of splittings. A selection of the associated resolution
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Figure 6.17: Comparison of inverted profile using MWO (dashed line) and combined n-averaged
BBSO-MWO (solid line) splittings, using the CLS2d method.

Figure 6.18: Comparison of inverted profile using MWO (dashed line) and combined n-averaged
BBSO-MWO (solid line) splittings, using the OAK method.
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Figure 6.19: Comparison of resolving widths obtained using MWO and combined n-averaged
BBSO-MWO splittings, using the CLS1d (top panel), the CLS1d (middle panel) and the OAK
(bottom panel) methods, plotted versus the resolution kernel centroid location.
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kernels for one of the resulting profile is presented Figure 6.21 where the resolution kernels

are compared to the corresponding standard solution, while the resolving widths for the

BBSO-MWO combined set solutions are compared to the corresponding standard solution

widths in Figure 6.22.

While very similar profiles are obtained in the outer 20% of the solar interior whether

allowing or not for a discontinuity, the following points can be noticed. First, the intro-

duction of the discontinuity leads to less well localized resolution kernels at every depth

when compared to the corresponding standard solution, except for a marginal improve-

ment in the deepest region. This degradation is concentrated around the targeted dis-

continuity, and leads to a skewed estimate of the resolution kernel centroids. Secondly,

the amplitude of the discontinuity is a function of its a priori assumed location when the

inverted set of splittings do not include the very low degree modes (namely when using

the MWO set alone). On the contrary, when including these values, hence increasing the

resolution below the most probable location of the discontinuity, the amplitude of such

potential discontinuity remains fairly independent of the assumed location of the disconti-

nuity. Nevertheless, the resolution kernels near the discontinuity remain poorly localized,

and especially so for the target radii situated below the estimated location of the discon-

tinuity. This prevents one from conclusively asserting the reality, location and amplitude

of the discontinuity and indicates that such results should be interpreted with caution.

Results from Singlet and n-averaged Splittings

Since the BBSO data set provides an estimate of the frequency splittings for each individual

radial overtone, and since significant differences in the rotational kernels associated with

different radial overtones are present, it is highly desirable to avoid reducing the data set to

n-averaged values from an inversion standpoint. Therefore we have also inverted the BBSO

singlet measurements (5 ≤ ℓ ≤ 60), but have consolidated that set with the intermediate-
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Figure 6.20: Inverted profiles using the CLS1d method modified to allow for a discontinuity. The
discontinuities locations are 0.72 R⊙ (left panels), 0.73 R⊙ (middle panels) and 0.74 R⊙ (right
panels) respectively. The bottom panels show solutions based on the MWO set alone while the
top panels present solutions obtained with the BBSO-MWO combined set.
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Figure 6.21: Resolution kernels associated with the profile inverted using the CLS1d method
modified to allow for a discontinuity at 0.73R⊙, and based on the combined BBSO-MWO set (i.e.
corresponding to the solution presented in the middle upper panel in Figure 6.20). The resolution
kernels associated with the corresponding standard CLS1d solution are indicated by the dashed
curves.
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Figure 6.22: Resolving widths versus resolution kernel centroid for the solution obtained with the
CLS1d method modified to allow for a discontinuity, and based on the BBSO–MWO combined set.
The filled circles indicate the resolving widths associated with the corresponding standard CLS1d
solution.

and high-degree n-averaged MWO values (ℓ = 61, (1), 119 and ℓ = 126, (10), 596). As

previously and when required, tesseral frequency splittings were reduced to their sectoral

equivalent.

Figure 6.23 presents inverted profiles obtained with the OAK method using respectively

the BBSO set alone (797 singlet values for 5 ≤ ℓ ≤ 60), the BBSO set complemented

by the MWO intermediate-degree, high-resolution, n-averaged set (852 values, 797 singlet

values extended by 55 n-averaged values to ℓ < 120) and the BBSO set complemented

by the intermediate-degree, high-resolution and high-degree, low-resolution sets (i.e. 900

values, 797 singlet values extended by 103 n-averaged values to ℓ ≤ 596). A selection of

associated resolution kernels are shown in Figures 6.24 to 6.26, while Figure 6.27 presents

the resolving width as a function of the kernel centroid for each set.

These figures indicates that a) the localization of the resolution kernels is dramatically
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Figure 6.23: Inverted profiles computed with the OAK method and obtained using the singlet
BBSO values consolidated by the MWO intermediate- and high-degree n-averaged values (i.e. 797
singlets for 5 ≤ ℓ ≤ 60 combined with 103 n-averaged values for 60 < ℓ ≤ 595). Also plotted are
solutions computed using the BBSO set alone (i.e. 797 singlets for 5 ≤ ℓ ≤ 60) and using the BBSO
set combined with the intermediate-degree MWO set (i.e. 797 singlets for 5 ≤ ℓ ≤ 60 combined
with 55 n-averaged values for 60 < ℓ ≤ 120).

improved by adding a small number of modes that sample uniquely the subsurface regions,

and b) despite presenting similar features where the resolution kernels are localized, a sys-

tematic shift of some 10 and 5 nHz respectively is present when not including intermediate-

or high-degree modes1. This systematic shift is easely explained by the residual sensitivity

of the resolution kernels associated with the deeper target radii to the subsurface value.

Finally, let us point out that, while indeed the use of different radial overtones, when

restricted to low-degree modes, allows us to extend the inversion beyond the typical inner

turning point of the highest degree available (namely 0.85R⊙ while the inner turning point

for ℓ = 60 and ν = 3.3 mHz is around 0.78R⊙), the total absence of information on the

1The CLS methods presented systematics of a different nature when not including the intermediate- or
high-degree modes, but would in every case produce less localized kernels than the one obtained for the
corresponding case with the OAK method
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Figure 6.24: Selection of resolution kernels associated with the solution presented Figure 6.23
that uses only the singlet BBSO set
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Figure 6.25: Selection of resolution kernels associated with the solution presented Figure 6.23
that uses the singlet BBSO set combined with the intermediate-degree MWO set

214



Figure 6.26: Selection of resolution kernels associated with the solution presented Figure 6.23
that uses the singlet BBSO set consolidated by the MWO intermediate- and high-degree set
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Figure 6.27: Resolving widths associated with solutions presented Figure 6.23

subsurface layers, to which these low-degree modes are also sensitive, introduces system-

atic effects associated with the limitation of any method to provide perfectly localized

resolution kernels.

6.3 Conclusions

Keeping in mind that the solar internal angular velocity profile inferred in this chapter

may be affected by systematic errors still present in the frequency splitting data set, the

following picture for the equatorial rotation rate, as presented in Figure 6.28, emerges from

the present study. First, we confirm the presence of a strong evidence for a discontinuity

of the rotation rate at the base of the convection zone, but we remain unsuccessful in

pinpointing its location or estimating reliably its amplitude. Second, by expanding the

available splitting measurements to high-degree modes, a new picture emerges of the

rotation rate in the outermost 15% of the solar radius that may reconcile the different
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Figure 6.28: Equatorial rotation rate as a function of depth inferred from rotational frequency
splittings, measured for degree 5 ≤ ℓ ≤ 600. Measurements based on 1988 BBSO (5 ≤ ℓ ≤ 60) and
on 1988 MWO (60 < ℓ ≤ 600) observations have been combined to obtain this profile.

non-seismic “surface” measurements.

While our inverted rotation profile is consistent with the spectroscopic rotation rate when

extrapolated to the surface, it presents a rise with depth of the equatorial rotation rate

just below the surface to reach a maximum value around R/R⊙ = 0.93±0.01. This higher-

than-surface value is consistent, in view of the actual width of the resolution kernels, with

the rotation rate determined independently from cross-correlation doppler measurements

(473.0 nHz, Snodgrass and Ulrich 1990) and attributed to the supergranulation network.

In the deeper regions, namely, the bottom third of the convection zone, the inverted

rotation rate presents a plateau around 464 nHz consistent with the magnetic feature

rotation rate (462 nHz, Snodgrass 1983).

On the basis of the correspondence between the various non-seismic measurements of

the “surface” rotation rate and the features present in our inverted profile of the solar
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rotation rate, we are tempted to speculate that the supergranulation network may be

driven by a region located some 49± 7 Mm below the solar surface, a depth in reasonable

agreement with the horizontal scale of supergranulation (∼ 30 Mm). On the other hand,

the surface magnetic features would be driven by a layer situated in the bottom third of

the convection zone that would in turn be the seed of the surface magnetic field. This

conclusion is consistent with inversion results of even-indexed splitting coefficients showing

evidence for a megagauss size toroidal field centered near the base of the convection zone

(Dziembowski and Goode, 1989).

As previous inversions of p-modes frequency splittings have indicated, we see no evidence

for an increase of the rotation rate with depth, as deep as 0.5 R⊙, but on the contrary,

we see a definite inward decrease of some 6% in the rotation rate, concentrated at the

base of the convection zone. By expanding the measure of p-mode frequency splittings

to high-degree modes, we were also able to resolve the subsurface regions, and infer an

increase inwards of the rotation rate by some 3% in the upper fourth of the convection

zone.

In contrast, kinematic theories of solar dynamo (see Gilman, 1986) have been able to

successfully represent several of the observed solar features, namely the period of the

magnetic field reversal, the migration towards the equator of toroidal fields and in some

cases the amplitude of the cycle, with the α–ω dynamo process, by relying on an angular

velocity that increases inwards. On the other hand, global circulation models (Gilman and

Miller, 1986) that attempt to explain the solar differential rotation, predict an angular

velocity that decreases inwards, and is nearly constant on cylindrical surfaces parallel to

the axis of rotation.

Clearly, our results are in strong disagreement with the classical kinematic dynamo theory,

since our inverted profile is nearly flat in the convection zone. While we observe a 3%

inward increase of the angular velocity in the outermost regions of the convection zone,
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the classical kinematic theory assumes that solar dynamo is seated in the bulk of the

convection zone, and relies on an overall positive gradient in that region. However, as

recent global circulation models have suggested, the source of the solar dynamo may

instead be seated in a thin layer located at the bottom of the convection zone, rather than

driven by the differential rotation in the bulk of the convection zone. In that thin layer,

the sharp inward decrease of the angular velocity, associated with the vanishing of the

differential rotation and the presence of a significant magnetic field would be the driving

mechanism behind the solar dynamo, hence the solar cycle. The plausibility of a dynamo

mechanism in these conditions has been indicated by Gilman et al. (1989).

Finally, let us point out that evolutionary models of rotating stars (Pinsonneault et al.,

1989) predict a nearly flat rotation rate in the outer layers of the solar interior (R > 0.6R⊙)

combined with a rapidly rotating core (i.e. a rotation some 4 to 15 times the surface values

at 0.2 R⊙). While the present accuracy of the low-degree p-mode frequency splittings

limits the resolution of any inversion to the upper half of the solar interior, no significant

hint for an inward increase of the solar rotation can be observed in our inverted profile.

Thus, even though our results do not contradict the rapidly rotating core hypothesis, they

do place an upper limit in the depth at which the required inward increase would begin.

Hence our results favor models with either a slower or smaller rapidly rotating core.
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Appendix A

Frequency Splittings

A.1 Tesseral Values from the High-Resolution Spectra

The following table lists the Legendre polynomials fitting coefficients resulting from the
frequency splitting analysis of the high resolution tesseral spectra. The coefficients are
listed in nHz, sideral, with the respective 3σ uncertainties estimated from the scatter to
the fit.

ℓ a0 a1 a2 a3 a4 a5

20 -0.03 1.02 434.70 1.74 0.72 2.20 17.62 2.58 0.34 2.87 1.18 3.19
21 0.07 1.49 441.20 2.70 1.86 3.56 6.78 4.45 6.83 5.05 5.94 5.88
22 0.28 1.16 436.70 1.98 -3.33 2.51 7.24 2.94 2.26 3.28 6.41 3.63
23 0.11 1.15 439.20 2.07 4.08 2.73 18.10 3.38 3.71 3.85 2.73 4.45
24 0.03 1.02 437.50 1.74 -1.12 2.21 12.73 2.59 0.20 2.89 -4.70 3.19
25 0.00 0.92 437.50 1.65 1.69 2.17 12.96 2.67 2.91 3.05 -2.64 3.50
26 -0.04 0.92 441.70 1.57 5.26 2.00 8.86 2.34 -5.11 2.61 1.70 2.88
27 0.07 0.62 436.60 1.10 -1.43 1.45 18.19 1.77 -3.10 2.02 0.66 2.32
28 0.06 0.98 438.20 1.68 3.54 2.14 11.89 2.50 -2.38 2.80 -0.68 3.08
29 -0.03 0.74 439.80 1.31 6.69 1.72 14.96 2.10 -0.86 2.41 6.16 2.75
30 0.12 0.75 438.80 1.29 -1.25 1.64 13.98 1.92 -3.05 2.14 0.69 2.36
31 0.18 0.70 438.60 1.24 2.59 1.63 14.16 1.98 -1.48 2.27 -1.97 2.58
32 -0.08 0.86 436.20 1.48 1.26 1.88 12.56 2.21 0.02 2.47 -4.05 2.72
33 0.08 0.64 439.70 1.13 3.36 1.48 13.92 1.80 3.65 2.06 -5.91 2.34
34 0.10 0.67 440.20 1.15 0.42 1.46 18.61 1.71 -3.20 1.92 -3.38 2.11
35 0.02 0.67 440.90 1.18 0.27 1.54 15.20 1.87 1.68 2.14 -2.61 2.42
36 0.44 0.64 434.70 1.28 5.72 1.81 12.98 2.14 3.37 2.39 -5.93 2.41
37 0.01 0.83 436.20 1.47 1.94 1.93 16.30 2.33 0.45 2.67 0.18 3.01
38 0.11 0.65 437.80 1.12 2.42 1.43 17.35 1.67 -1.27 1.88 0.47 2.06
39 -0.02 0.57 437.60 1.01 4.78 1.31 18.17 1.59 -2.57 1.82 -7.95 2.05

Table A.1: Legendre polynomials fitting coefficients resulting from the frequency splitting
analysis of the tesseral high resolution spectra
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ℓ a0 a1 a2 a3 a4 a5

40 0.08 0.60 438.30 1.04 1.09 1.32 17.49 1.55 -0.30 1.74 -3.86 1.92
41 0.02 0.54 438.20 0.94 2.38 1.23 20.47 1.49 2.11 1.70 0.45 1.92
42 0.08 0.53 436.40 0.92 0.64 1.17 18.81 1.37 -1.17 1.54 1.51 1.69
43 0.03 0.67 438.10 1.17 -0.28 1.53 20.12 1.85 4.51 2.11 -4.04 2.38
44 0.08 0.58 435.70 1.00 1.28 1.28 17.08 1.50 -0.73 1.68 1.45 1.85
45 0.01 0.29 437.50 0.51 -0.51 0.67 19.93 0.80 0.55 0.92 0.14 1.04
46 0.06 0.41 439.20 0.71 0.55 0.91 19.38 1.07 -0.69 1.20 -0.80 1.32
47 -0.08 0.43 439.40 0.75 0.23 0.98 22.51 1.18 2.65 1.35 2.45 1.51
48 0.06 0.50 440.50 0.85 0.17 1.09 20.68 1.28 -1.15 1.43 0.49 1.58
49 -0.06 0.50 438.20 0.87 3.10 1.15 17.44 1.37 1.72 1.57 -0.46 1.77
50 0.16 0.57 438.70 0.98 -0.88 1.26 21.56 1.47 -2.59 1.66 -2.14 1.82
51 -0.03 0.42 439.00 0.73 -1.45 0.95 21.08 1.14 -1.63 1.30 -1.26 1.46
52 0.07 0.42 438.70 0.73 -1.40 0.93 21.29 1.09 -4.29 1.22 0.96 1.35
53 -0.02 0.45 441.30 0.79 3.20 1.03 23.07 1.23 -1.29 1.41 -1.60 1.58
54 0.00 0.40 437.10 0.68 0.62 0.87 20.28 1.02 -0.11 1.15 -0.26 1.26
55 0.00 0.47 438.50 0.82 2.84 1.08 22.37 1.29 -0.22 1.49 -0.63 1.65
56 -0.03 0.46 440.90 0.78 -0.19 1.00 19.81 1.18 -0.41 1.33 -3.67 1.46
57 -0.02 0.41 442.50 0.73 2.68 0.94 23.98 1.13 4.01 1.29 0.10 1.45
58 -0.04 0.42 443.30 0.72 0.63 0.94 20.83 1.08 -1.16 1.21 -1.07 1.33
59 0.07 0.35 440.70 0.60 2.79 0.79 21.37 0.94 2.75 1.07 0.45 1.20
60 0.09 0.41 441.90 0.70 1.38 0.90 19.02 1.07 1.61 1.18 -2.57 1.33
61 -0.04 0.43 439.40 0.76 1.56 0.98 23.09 1.18 -3.05 1.35 -2.17 1.50
62 0.10 0.39 441.10 0.68 3.55 0.89 18.62 1.07 1.21 1.22 -5.91 1.34
63 0.02 0.39 439.50 0.68 2.23 0.88 25.66 1.05 -1.27 1.20 1.14 1.34
64 -0.06 0.40 438.60 0.68 0.78 0.87 23.80 1.02 2.12 1.15 -3.25 1.27
65 0.01 0.37 442.30 0.64 -0.44 0.84 23.34 1.00 -0.81 1.14 -0.45 1.28
66 0.02 0.32 443.40 0.56 -3.62 0.71 16.58 0.84 2.37 0.94 -0.78 1.04
67 -0.05 0.35 443.20 0.60 3.74 0.79 20.74 0.93 -0.45 1.07 -5.05 1.19
68 -0.03 0.31 443.00 0.54 -2.82 0.69 17.82 0.81 -2.15 0.91 -2.98 1.01
69 0.03 0.34 444.30 0.60 0.47 0.77 17.98 0.93 -1.13 1.06 -5.25 1.17
70 0.08 0.33 443.40 0.56 -5.16 0.72 20.19 0.83 2.46 0.96 -2.32 1.04
71 -0.06 0.37 442.10 0.64 -0.18 0.84 23.70 1.00 -0.96 1.14 -2.01 1.28
72 -0.04 0.28 442.50 0.48 0.56 0.62 20.99 0.72 1.71 0.82 -1.81 0.90
73 0.10 0.31 442.90 0.53 2.25 0.69 21.30 0.83 -0.59 0.94 -1.93 1.05
74 0.01 0.25 444.40 0.43 -1.30 0.55 20.77 0.65 -0.43 0.74 -4.58 0.81
75 0.03 0.30 443.10 0.51 -1.63 0.67 20.41 0.81 -1.59 0.92 -3.97 1.02
76 -0.02 0.35 444.10 0.59 -0.31 0.78 22.71 0.90 1.11 1.03 -6.28 1.12
77 -0.04 0.34 441.80 0.59 -0.85 0.77 20.43 0.91 -0.58 1.05 -2.22 1.16
78 0.05 0.31 441.80 0.54 -0.30 0.70 18.38 0.83 -1.05 0.96 -4.83 1.06
79 0.04 0.28 443.10 0.48 0.88 0.63 19.86 0.75 -0.24 0.84 -4.18 0.95
80 0.00 0.31 442.50 0.52 -2.12 0.68 19.66 0.80 -4.15 0.89 -2.29 0.98
81 0.06 0.28 443.00 0.47 -1.60 0.61 20.52 0.74 -0.76 0.83 -2.10 0.93
82 0.09 0.35 442.40 0.59 1.03 0.77 19.21 0.90 -0.73 1.02 -2.39 1.11
83 0.07 0.30 441.10 0.53 -2.14 0.69 20.78 0.82 -0.71 0.94 -4.13 1.04
84 -0.15 0.32 442.40 0.56 -0.94 0.71 21.61 0.84 -0.43 0.95 -3.33 1.04
85 0.03 0.33 442.70 0.57 0.84 0.74 19.92 0.90 0.85 1.01 -4.74 1.14

Table A.1 (continued)
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ℓ a0 a1 a2 a3 a4 a5

86 0.02 0.31 441.70 0.53 1.40 0.69 22.22 0.81 -3.55 0.91 -5.90 1.01
87 -0.01 0.37 442.40 0.63 -0.38 0.82 20.75 0.99 -0.31 1.12 -3.90 1.25
88 0.00 0.33 443.80 0.56 -0.03 0.72 20.78 0.85 -0.85 0.96 -3.91 1.05
89 -0.04 0.31 440.90 0.53 0.55 0.71 20.54 0.84 -1.08 0.93 -4.16 1.06
90 0.14 0.36 440.30 0.62 0.25 0.81 19.82 0.95 -1.77 1.10 -3.39 1.22
91 -0.12 0.34 441.40 0.58 -0.38 0.77 21.14 0.91 0.86 1.03 -3.03 1.13
92 -0.02 0.34 442.40 0.59 -1.81 0.76 20.04 0.90 -3.19 0.99 -4.23 1.09
93 -0.05 0.32 441.90 0.56 -0.30 0.74 24.06 0.87 0.74 0.99 -5.41 1.09
94 0.10 0.28 441.00 0.50 1.06 0.66 24.92 0.78 1.85 0.90 3.01 1.02
95 -0.07 0.30 439.90 0.52 -0.97 0.69 22.29 0.80 0.86 0.92 -4.11 1.02
96 0.03 0.36 441.10 0.60 2.73 0.80 22.32 0.95 0.95 1.06 -1.88 1.21
97 0.13 0.39 440.50 0.68 0.62 0.90 21.14 1.08 0.81 1.22 -5.00 1.37
98 -0.03 0.34 440.20 0.57 2.58 0.75 19.64 0.88 -1.33 0.98 -5.16 1.09
99 -0.06 0.29 441.90 0.50 0.63 0.65 22.35 0.76 -2.20 0.87 -3.13 0.97
100 0.08 0.31 441.10 0.54 0.40 0.70 19.35 0.82 -0.13 0.94 -3.78 1.04
101 -0.01 0.31 440.40 0.52 -0.06 0.70 22.25 0.81 0.17 0.93 -4.05 1.04
102 0.06 0.23 442.60 0.40 2.26 0.53 23.24 0.63 0.79 0.72 -2.01 0.79
103 -0.06 0.29 443.10 0.50 2.26 0.65 20.91 0.78 -1.04 0.87 -3.62 0.99
104 -0.01 0.32 441.50 0.55 0.98 0.72 22.04 0.85 -0.57 0.98 -1.46 1.09
105 0.01 0.29 440.10 0.50 3.91 0.68 19.72 0.82 0.75 0.95 -4.41 1.04
106 0.01 0.25 439.80 0.42 3.05 0.56 22.89 0.65 -0.58 0.73 0.24 0.81
107 -0.07 0.23 440.80 0.40 2.99 0.54 18.70 0.64 0.69 0.73 -5.30 0.81
108 0.04 0.24 442.60 0.41 2.63 0.53 22.00 0.63 -0.91 0.71 -2.92 0.78
109 0.02 0.22 439.90 0.37 1.03 0.49 22.36 0.57 -0.25 0.66 -4.03 0.73
110 -0.04 0.26 441.20 0.43 4.63 0.58 20.37 0.67 -1.18 0.78 0.21 0.84
111 -0.04 0.24 440.80 0.41 0.75 0.55 22.00 0.64 -1.20 0.73 -3.97 0.82
112 -0.03 0.25 440.80 0.42 2.01 0.54 21.99 0.66 -0.30 0.76 -3.45 0.82
113 0.09 0.23 443.60 0.38 -3.62 0.51 19.30 0.60 0.94 0.67 -1.64 0.76
114 -0.03 0.25 443.30 0.42 0.55 0.55 19.98 0.66 0.69 0.72 -2.45 0.81
115 -0.01 0.24 443.70 0.41 0.45 0.53 22.83 0.63 -0.47 0.72 -4.48 0.81
116 0.04 0.18 442.10 0.30 -0.66 0.41 19.87 0.47 -0.44 0.53 -3.73 0.58
117 -0.04 0.23 441.20 0.38 2.61 0.50 18.48 0.60 -4.22 0.68 -0.60 0.75
118 0.03 0.22 442.00 0.37 -1.12 0.49 19.82 0.56 0.19 0.66 -5.02 0.71
119 0.07 0.18 441.80 0.30 -1.25 0.40 20.11 0.48 1.93 0.56 -3.73 0.61

Table A.1 (continued)
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A.2 Sectoral Results from the Low-Resolution Spectra

The following table lists the scaled frequency splittings ∆ν/2ℓ, binned in 10-ℓ wide bins,
estimated from the sectoral high-resolution spectra. The uncertainties were estimated
from the scatter in the bins. The values are listed in nHz, sideral.

ℓ ∆ν/2ℓ

26 442.77 17.06
36 459.22 4.49
46 453.35 3.76
56 463.85 8.19
66 458.86 15.47
76 458.21 3.03
86 462.38 4.56
96 458.69 4.06
106 460.89 6.28
116 463.55 5.52
126 464.85 5.58
136 461.64 7.45
146 453.84 6.96
156 459.90 7.65
166 459.86 2.50
176 452.60 4.51
186 456.01 2.10
196 454.26 3.15
206 455.54 2.55
216 451.54 5.46
226 451.01 3.62
236 454.29 2.55
246 453.59 2.75
256 453.66 4.05
266 451.68 2.58
276 449.48 1.95
286 450.79 3.69
296 451.16 3.46
306 449.37 2.05

ℓ ∆ν/2ℓ

316 449.57 2.16
326 452.70 2.29
336 450.92 0.79
346 446.87 2.17
356 447.66 4.04
366 449.60 1.28
376 449.52 1.78
386 447.91 3.01
396 454.05 4.29
406 447.38 2.71
416 444.93 1.12
426 445.75 3.25
436 453.00 2.16
446 447.44 5.36
456 451.14 3.24
466 447.58 4.07
476 449.03 1.10
486 448.49 1.00
496 443.54 4.19
506 441.27 2.94
516 446.13 3.21
526 442.16 4.11
536 438.93 2.29
546 441.50 4.11
556 448.91 5.12
566 446.45 6.02
576 447.23 5.08
586 448.88 4.78
596 442.34 2.94

Table A.2: Scaled frequency splittings (∆ν/2ℓ) estimated form the low resolution sectoral
spectra
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Appendix B

Modal Frequencies, Widths and

Amplitudes Estimated from the

High-Resolution Spectra

The following table lists the modal frequency, width and total power estimated from
the high-resolution collapsed spectra. The modal widths have been corrected for the finite
window function resolution using the Gaussian appoximation. No width is listed for modes
sensitive to the spatio-temporal sidelobe contamination, and note also that in these cases,
the total power is most likely contaminated by an overestimate of the mode’s width. The
frequencies (ν), FWHM, and their 1σ uncertainties are listed in µHz. The modal total
power (Ptot) corresponds to the square of the average surface velocity, in (m/s)2.

ℓ n ν FWHM Ptot

21 6 1758.40 0.05 1.11 0.04 5.06E-04
21 7 1919.88 0.02 0.61 0.02 4.66E-04
21 8 2077.59 0.02 1.09 0.01 1.73E-03
21 9 2231.93 0.03 1.43 0.02 3.53E-03
21 11 2529.45 0.03 1.72 0.03 1.92E-02
21 12 2676.40 0.04 1.84 0.03 3.00E-02
21 13 2823.26 0.02 0.57 0.02 2.98E-02
21 14 2969.01 0.04 1.34 0.03 6.95E-02
21 15 3114.06 0.02 1.41 0.02 7.77E-02
21 16 3258.79 0.07 2.52 0.06 1.21E-01
21 17 3403.03 0.03 – – 2.49E-02
21 18 3547.34 0.12 – – 5.59E-02

ℓ n ν FWHM Ptot

22 6 1781.49 0.11 – – 8.17E-04
22 7 1944.92 0.06 – – 6.28E-04
22 8 2105.02 0.07 1.75 0.05 1.93E-03
22 9 2260.03 0.03 1.56 0.02 4.24E-03
22 10 2410.92 0.02 1.12 0.02 9.39E-03
22 11 2559.47 0.07 2.45 0.05 1.86E-02
22 12 2707.21 0.01 0.99 0.01 3.48E-02
22 13 2854.87 0.03 1.28 0.02 5.83E-02
22 14 3001.50 0.03 1.63 0.02 1.09E-01
22 15 3147.44 0.05 2.03 0.04 1.04E-01
22 16 3292.58 0.07 3.02 0.06 1.00E-01

Table B.1: Modal frequency, width and total power estimated from the high resolution
collapsed spectra
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ℓ n ν FWHM Ptot

22 17 3437.27 0.12 3.13 0.09 5.32E-02
22 18 3581.95 0.07 – – 1.60E-02

23 6 1804.03 0.06 – – 4.19E-04
23 7 1969.71 0.08 2.36 0.06 1.33E-03
23 8 2131.22 0.02 0.65 0.02 1.35E-03
23 9 2287.38 0.03 0.52 0.04 2.01E-03
23 10 2439.37 0.02 1.38 0.02 9.18E-03
23 11 2588.65 0.04 1.16 0.03 1.56E-02
23 12 2737.59 0.02 1.84 0.02 5.17E-02
23 13 2886.28 0.04 1.99 0.03 7.19E-02
23 14 3033.57 0.02 1.42 0.02 7.73E-02
23 16 3325.53 0.06 2.14 0.05 8.97E-02
23 18 3617.12 0.13 – – 3.97E-02

24 6 1826.53 0.05 1.22 0.04 4.07E-04
24 7 1993.78 0.07 1.56 0.06 9.41E-04
24 8 2156.77 0.11 – – 3.79E-03
24 9 2314.61 0.03 0.85 0.02 3.22E-03
24 10 2467.21 0.06 1.86 0.05 1.22E-02
24 11 2617.83 0.05 2.23 0.04 2.31E-02
24 12 2767.94 0.03 1.80 0.02 6.25E-02
24 13 2917.17 0.04 2.15 0.03 8.64E-02
24 14 3065.15 0.04 2.60 0.03 1.26E-01
24 15 3212.18 0.04 2.28 0.03 1.40E-01
24 16 3358.80 0.05 2.56 0.04 9.34E-02
24 17 3504.88 0.11 3.34 0.08 6.02E-02

26 6 1869.30 0.06 1.50 0.05 8.06E-04
26 7 2039.71 0.06 1.76 0.05 1.77E-03
26 8 2206.25 0.03 1.18 0.02 4.03E-03
26 9 2366.29 0.02 1.47 0.02 9.77E-03
26 10 2521.28 0.04 2.01 0.03 1.77E-02
26 11 2674.60 0.03 1.38 0.02 2.88E-02
26 12 2826.79 0.05 2.04 0.04 6.14E-02
26 13 2977.60 0.02 0.78 0.02 5.60E-02
26 14 3127.06 0.03 2.49 0.03 1.01E-01
26 15 3275.35 0.12 3.44 0.09 1.04E-01
26 16 3423.58 0.12 3.68 0.10 6.49E-02
26 18 3718.66 0.20 – – 2.24E-02

27 6 1889.77 0.02 0.84 0.02 6.49E-04
27 7 2062.16 0.03 1.31 0.03 1.89E-03
27 8 2229.68 0.07 2.81 0.05 7.05E-03
27 9 2391.15 0.06 2.51 0.04 1.20E-02
27 10 2547.65 0.10 3.45 0.08 2.12E-02
27 11 2702.25 0.03 1.88 0.03 2.85E-02
27 12 2855.42 0.03 1.24 0.02 5.25E-02

ℓ n ν FWHM Ptot

27 13 3007.22 0.04 2.10 0.03 9.39E-02
27 14 3157.33 0.04 1.96 0.03 9.87E-02
27 15 3307.03 0.08 2.41 0.06 8.67E-02
27 16 3455.45 0.10 2.46 0.08 5.22E-02

28 6 1909.98 0.10 – – 6.17E-04
28 7 2083.98 0.04 1.46 0.03 1.91E-03
28 8 2252.46 0.07 3.04 0.05 6.27E-03
28 9 2415.72 0.05 1.92 0.04 1.09E-02
28 10 2573.33 0.02 1.60 0.01 2.09E-02
28 11 2729.47 0.02 1.56 0.02 3.96E-02
28 12 2883.80 0.03 1.83 0.03 8.17E-02
28 13 3036.54 0.04 1.56 0.03 9.26E-02
28 14 3187.14 0.07 2.74 0.05 8.80E-02
28 15 3337.44 0.06 2.95 0.05 7.45E-02
28 16 3486.99 0.15 3.87 0.12 6.84E-02

29 6 1929.99 0.04 0.87 0.04 5.84E-04
29 7 2105.48 0.04 1.67 0.04 2.01E-03
29 8 2275.62 0.05 1.88 0.04 5.81E-03
29 9 2439.00 0.04 2.38 0.03 1.63E-02
29 10 2598.85 0.03 1.15 0.02 1.53E-02
29 11 2756.16 0.03 1.37 0.02 3.90E-02
29 12 2911.77 0.02 1.59 0.02 7.70E-02
29 13 3065.19 0.03 1.87 0.02 1.08E-01
29 14 3217.12 0.03 2.15 0.02 7.82E-02
29 15 3367.92 0.08 2.72 0.06 6.91E-02
29 16 3518.07 0.16 4.19 0.13 6.75E-02
29 19 3966.23 0.25 – – 1.64E-02

30 6 1950.01 0.06 1.52 0.05 8.22E-04
30 7 2126.38 0.07 2.01 0.06 2.16E-03
30 8 2297.47 0.05 2.41 0.04 8.29E-03
30 9 2462.44 0.04 2.15 0.03 1.60E-02
30 10 2623.64 0.05 2.87 0.04 4.47E-02
30 11 2782.57 0.02 1.17 0.02 3.32E-02
30 12 2939.24 0.02 1.14 0.02 7.36E-02
30 13 3093.53 0.04 1.84 0.03 8.46E-02
30 14 3246.26 0.03 2.06 0.03 7.92E-02
30 15 3397.72 0.05 2.81 0.04 7.87E-02
30 16 3549.03 0.11 3.51 0.09 4.84E-02
30 17 3700.18 0.24 – – 3.35E-02

31 5 1788.54 0.09 – – 2.92E-04
31 6 1969.43 0.05 1.24 0.04 7.74E-04
31 7 2146.99 0.03 1.54 0.03 2.78E-03
31 8 2319.09 0.08 2.41 0.06 8.15E-03
31 9 2485.27 0.07 2.35 0.05 1.57E-02

Table B.1 (continued)
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ℓ n ν FWHM Ptot

31 10 2647.79 0.07 2.47 0.05 4.43E-02
31 11 2808.45 0.04 2.17 0.03 7.03E-02
31 12 2966.30 0.03 1.55 0.03 1.01E-01
31 13 3121.39 0.10 2.86 0.08 1.18E-01
31 14 3275.12 0.06 2.54 0.05 8.25E-02
31 16 3579.79 0.05 – – 1.06E-02

32 5 1806.08 0.09 – – 6.61E-04
32 6 1988.71 0.03 1.32 0.02 9.57E-04
32 7 2167.53 0.05 1.96 0.04 2.33E-03
32 8 2340.31 0.04 1.72 0.03 5.91E-03
32 9 2507.43 0.04 2.33 0.03 2.25E-02
32 10 2671.65 0.09 3.09 0.07 4.21E-02
32 11 2833.80 0.05 2.76 0.04 8.60E-02
32 12 2992.86 0.03 2.02 0.02 1.38E-01
32 13 3149.22 0.01 1.14 0.01 7.99E-02
32 14 3303.51 0.04 2.36 0.03 8.21E-02

33 5 1823.85 0.02 0.64 0.02 3.29E-04
33 6 2007.80 0.04 1.58 0.03 1.64E-03
33 7 2187.53 0.02 1.21 0.02 3.16E-03
33 8 2360.98 0.06 2.22 0.05 7.40E-03
33 9 2529.25 0.05 2.19 0.04 1.96E-02
33 10 2694.89 0.03 1.68 0.02 3.54E-02
33 11 2858.66 0.03 1.63 0.03 6.63E-02
33 12 3019.10 0.04 2.34 0.03 9.61E-02
33 13 3176.21 0.05 2.32 0.04 1.17E-01
33 14 3331.65 0.07 2.06 0.06 6.39E-02

34 5 1841.56 0.07 – – 6.21E-04
34 6 2026.58 0.02 0.82 0.02 1.15E-03
34 7 2207.24 0.02 0.99 0.02 3.54E-03
34 8 2381.49 0.05 1.97 0.04 8.52E-03
34 9 2550.92 0.07 2.70 0.06 2.46E-02
34 10 2718.18 0.05 2.17 0.04 4.88E-02
34 11 2883.01 0.05 2.61 0.04 9.62E-02
34 12 3044.72 0.05 1.87 0.04 8.37E-02
34 13 3203.04 0.03 1.81 0.03 1.09E-01
34 14 3359.51 0.07 3.09 0.05 7.18E-02

35 5 1858.43 0.02 0.98 0.01 5.94E-04
35 6 2044.66 0.04 1.20 0.03 1.08E-03
35 7 2226.54 0.08 2.24 0.06 3.70E-03
35 8 2401.60 0.05 2.36 0.04 1.02E-02
35 9 2571.94 0.06 2.44 0.05 2.60E-02
35 10 2740.64 0.04 2.17 0.03 5.81E-02
35 11 2907.03 0.02 1.76 0.02 9.00E-02
35 12 3069.56 0.05 2.29 0.04 1.12E-01

ℓ n ν FWHM Ptot

35 13 3229.25 0.04 2.21 0.03 9.12E-02
35 15 3542.75 0.14 3.63 0.11 3.88E-02
35 16 3697.91 0.09 – – 1.84E-02

36 6 2063.18 0.07 1.81 0.05 1.31E-03
36 7 2245.52 0.04 1.21 0.04 2.89E-03
36 8 2421.40 0.06 2.39 0.05 1.49E-02
36 9 2592.97 0.03 1.66 0.03 2.25E-02
36 10 2763.05 0.04 1.55 0.04 4.09E-02
36 11 2930.46 0.03 2.15 0.03 1.16E-01
36 12 3094.31 0.05 2.85 0.04 1.65E-01
36 13 3255.18 0.04 3.05 0.03 1.37E-01
36 14 3413.60 0.12 3.64 0.10 7.62E-02

37 5 1892.08 0.05 1.38 0.04 8.05E-04
37 6 2081.23 0.06 1.68 0.05 1.82E-03
37 7 2264.21 0.11 – – 2.30E-03
37 8 2440.85 0.05 2.19 0.04 1.19E-02
37 9 2613.50 0.05 2.11 0.04 3.11E-02
37 10 2784.89 0.05 2.45 0.04 5.85E-02
37 11 2953.41 0.03 2.06 0.02 1.13E-01
37 12 3118.58 0.04 2.85 0.03 1.26E-01
37 13 3280.94 0.12 3.45 0.09 1.02E-01
37 14 3440.68 0.07 3.28 0.06 6.53E-02
37 15 3598.89 0.16 – – 4.23E-02

38 5 1908.79 0.04 1.53 0.03 1.06E-03
38 6 2098.92 0.04 1.18 0.03 1.35E-03
38 7 2283.00 0.03 1.61 0.02 5.19E-03
38 8 2460.07 0.03 1.42 0.02 1.45E-02
38 9 2633.76 0.06 2.18 0.05 2.83E-02
38 10 2806.36 0.07 2.53 0.06 6.89E-02
38 11 2975.88 0.04 1.91 0.03 1.08E-01
38 12 3142.61 0.05 2.37 0.04 1.23E-01
38 13 3306.04 0.10 3.20 0.08 7.84E-02
38 14 3467.05 0.07 3.49 0.05 6.92E-02

39 5 1925.33 0.08 1.90 0.06 8.17E-04
39 6 2116.55 0.05 1.83 0.04 2.19E-03
39 7 2301.65 0.08 2.27 0.06 5.25E-03
39 8 2479.13 0.06 2.10 0.05 1.26E-02
39 9 2654.08 0.05 1.71 0.04 2.22E-02
39 10 2827.52 0.06 2.27 0.04 7.02E-02
39 11 2998.26 0.05 2.33 0.04 1.08E-01
39 12 3165.98 0.04 2.13 0.03 8.63E-02
39 13 3330.54 0.08 2.74 0.06 8.86E-02

40 4 1743.22 0.06 1.62 0.05 7.56E-04

Table B.1 (continued)
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40 5 1941.41 0.03 1.25 0.02 1.01E-03
40 6 2134.18 0.05 1.91 0.04 2.23E-03
40 7 2319.47 0.06 1.93 0.05 4.85E-03
40 8 2498.06 0.04 1.91 0.04 1.42E-02
40 9 2673.93 0.05 2.06 0.04 3.68E-02
40 10 2848.30 0.06 2.77 0.05 6.86E-02
40 11 3020.29 0.03 2.60 0.02 1.17E-01
40 12 3189.06 0.03 2.12 0.03 1.14E-01
40 13 3354.99 0.07 3.66 0.05 9.65E-02
40 14 3518.88 0.12 3.51 0.10 4.40E-02
40 15 3680.55 0.16 – – 2.01E-02

41 5 1957.58 0.05 1.17 0.04 7.11E-04
41 6 2151.44 0.02 0.35 0.03 8.88E-04
41 7 2337.28 0.05 1.95 0.04 6.21E-03
41 8 2516.88 0.06 2.16 0.04 1.91E-02
41 9 2693.61 0.05 1.96 0.04 3.95E-02
41 10 2869.03 0.03 1.46 0.02 5.13E-02
41 11 3041.94 0.05 2.79 0.04 1.20E-01
41 12 3211.55 0.03 1.58 0.02 8.44E-02
41 13 3378.70 0.05 2.81 0.04 8.10E-02

42 5 1973.29 0.04 1.60 0.03 1.28E-03
42 6 2168.20 0.06 1.89 0.05 2.60E-03
42 7 2355.04 0.09 – – 6.25E-03
42 8 2535.19 0.04 1.82 0.03 1.46E-02
42 9 2713.31 0.05 1.89 0.04 3.47E-02
42 10 2889.84 0.09 2.87 0.07 8.16E-02
42 11 3063.15 0.04 1.97 0.03 8.39E-02
42 12 3233.93 0.08 3.13 0.06 9.51E-02
42 13 3402.24 0.07 3.38 0.06 8.21E-02

43 4 1786.67 0.07 – – 1.56E-04
43 5 1989.03 0.02 0.84 0.02 7.18E-04
43 6 2184.94 0.05 1.78 0.04 2.98E-03
43 7 2372.59 0.06 1.91 0.05 6.57E-03
43 8 2553.47 0.08 2.24 0.06 1.74E-02
43 9 2732.63 0.04 2.07 0.03 3.94E-02
43 10 2909.88 0.04 1.91 0.03 6.69E-02
43 11 3084.27 0.03 1.49 0.03 7.82E-02
43 12 3255.85 0.04 2.08 0.03 7.44E-02
43 15 3758.47 0.20 – – 1.54E-02

44 5 2004.73 0.05 1.27 0.04 1.13E-03
44 6 2201.63 0.03 1.49 0.02 3.26E-03
44 7 2389.54 0.03 1.75 0.02 8.95E-03
44 8 2571.52 0.06 2.03 0.05 1.98E-02
44 9 2751.60 0.09 2.46 0.07 2.91E-02

ℓ n ν FWHM Ptot

44 10 2929.83 0.04 2.28 0.03 8.36E-02
44 11 3105.14 0.08 2.97 0.06 1.15E-01
44 12 3277.47 0.05 2.70 0.04 1.05E-01
44 13 3448.26 0.17 – – 5.17E-02

45 4 1815.32 0.04 – – 1.62E-04
45 5 2020.13 0.04 1.10 0.03 9.78E-04
45 6 2218.07 0.06 1.67 0.05 3.04E-03
45 7 2406.70 0.02 1.55 0.02 8.03E-03
45 9 2770.68 0.03 1.74 0.02 4.13E-02
45 10 2950.00 0.02 0.58 0.02 3.22E-02
45 11 3125.53 0.07 2.57 0.05 8.82E-02
45 12 3299.20 0.10 3.04 0.07 9.59E-02
45 13 3470.88 0.08 2.47 0.07 3.98E-02

46 4 1829.26 0.03 0.57 0.04 2.20E-04
46 5 2035.29 0.07 2.03 0.06 2.11E-03
46 6 2234.43 0.02 0.16 0.05 6.97E-04
46 7 2423.52 0.04 1.77 0.03 1.09E-02
46 8 2607.43 0.04 1.89 0.03 2.88E-02
46 9 2789.56 0.06 2.20 0.04 4.99E-02
46 10 2969.10 0.04 2.00 0.03 9.01E-02
46 11 3146.15 0.04 1.98 0.03 9.08E-02

47 6 2250.09 0.03 1.29 0.02 2.25E-03
47 7 2439.98 0.07 1.80 0.05 8.22E-03
47 8 2625.00 0.06 2.05 0.04 2.13E-02
47 9 2808.19 0.07 2.29 0.05 5.32E-02
47 10 2988.80 0.03 1.45 0.02 7.38E-02
47 11 3166.17 0.08 2.79 0.06 1.01E-01
47 13 3514.94 0.14 – – 3.05E-02

48 4 1856.56 0.01 – – 2.09E-04
48 5 2065.34 0.04 1.00 0.04 7.25E-04
48 6 2265.80 0.05 1.52 0.04 3.20E-03
48 7 2456.59 0.02 1.17 0.02 9.30E-03
48 9 2826.63 0.03 1.82 0.03 4.96E-02
48 10 3007.76 0.05 1.87 0.04 7.97E-02
48 11 3186.10 0.08 2.33 0.06 7.71E-02
48 13 3536.59 0.14 – – 3.39E-02

49 4 1869.47 0.15 – – 1.93E-03
49 5 2080.02 0.06 1.37 0.05 1.04E-03
49 6 2281.55 0.03 1.30 0.03 2.85E-03
49 7 2472.88 0.05 1.55 0.04 9.43E-03
49 8 2659.79 0.03 1.71 0.03 2.68E-02
49 9 2845.12 0.06 2.28 0.05 5.60E-02
49 10 3027.06 0.04 1.79 0.03 7.38E-02
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49 11 3206.12 0.04 2.25 0.03 9.25E-02
49 12 3382.72 0.09 2.42 0.07 4.23E-02
49 13 3558.18 0.17 – – 3.06E-02

50 3 1661.41 0.04 – – 2.78E-04
50 4 1883.05 0.12 – – 2.00E-03
50 6 2297.25 0.08 1.79 0.06 3.31E-03
50 7 2489.32 0.06 1.62 0.05 1.10E-02
50 8 2677.14 0.04 1.87 0.03 2.63E-02
50 9 2863.03 0.05 2.17 0.04 5.82E-02
50 10 3045.87 0.06 2.21 0.05 6.89E-02
50 11 3225.60 0.07 2.09 0.05 6.92E-02
50 12 3403.04 0.12 3.48 0.09 4.53E-02

51 3 1673.80 0.07 – – 7.46E-04
51 4 1896.54 0.11 – – 1.94E-03
51 6 2312.51 0.06 – – 2.43E-03
51 7 2505.22 0.11 – – 1.19E-02
51 9 2881.25 0.03 1.71 0.03 6.01E-02
51 10 3064.65 0.06 2.20 0.05 6.68E-02
51 11 3245.22 0.13 – – 7.24E-02
51 12 3423.50 0.09 2.72 0.07 5.68E-02

52 3 1685.67 0.06 – – 4.35E-04
52 4 1909.64 0.11 – – 1.69E-03
52 7 2521.25 0.07 1.84 0.06 1.04E-02
52 8 2711.16 0.04 1.92 0.03 3.35E-02
52 9 2898.93 0.03 1.88 0.03 6.51E-02
52 10 3083.31 0.04 1.60 0.03 6.98E-02
52 11 3264.11 0.04 2.01 0.03 7.99E-02
52 13 3620.81 0.17 – – 1.30E-02

53 3 1697.71 0.04 – – 7.02E-04
53 4 1922.27 0.09 – – 1.71E-03
53 5 2137.80 0.05 1.04 0.04 1.48E-03
53 6 2342.14 0.03 0.92 0.03 3.65E-03
53 7 2536.91 0.07 1.59 0.05 8.66E-03
53 8 2727.97 0.03 1.62 0.02 2.53E-02
53 9 2916.58 0.06 2.28 0.04 8.69E-02
53 10 3101.65 0.07 2.35 0.06 7.95E-02
53 12 3463.76 0.13 – – 3.03E-02

55 3 1720.54 0.04 – – 6.28E-04
55 4 1948.01 0.09 – – 2.07E-03
55 5 2165.56 0.08 – – 2.11E-03
55 7 2568.02 0.08 – – 1.52E-02
55 8 2761.38 0.05 1.75 0.04 3.43E-02
55 9 2951.77 0.02 1.53 0.02 6.38E-02

ℓ n ν FWHM Ptot

55 10 3137.86 0.07 2.12 0.06 7.65E-02
55 11 3321.36 0.06 2.30 0.05 5.87E-02

56 3 1732.21 0.05 – – 6.89E-04
56 4 1960.85 0.05 – – 2.15E-03
56 5 2179.36 0.14 – – 6.93E-03
56 6 2386.09 0.06 – – 1.96E-03
56 7 2583.25 0.16 – – 1.51E-02
56 8 2777.66 0.04 1.55 0.03 3.65E-02
56 9 2968.89 0.05 1.68 0.04 5.56E-02
56 11 3340.41 0.08 2.20 0.06 4.66E-02

57 3 1743.24 0.07 – – 9.20E-04
57 4 1973.29 0.07 – – 2.04E-03
57 5 2192.83 0.10 – – 8.20E-03
57 6 2400.32 0.18 – – 2.11E-02
57 7 2598.37 0.07 2.16 0.06 2.01E-02
57 8 2794.13 0.03 1.67 0.02 4.06E-02
57 9 2985.95 0.06 1.86 0.04 5.82E-02
57 10 3173.72 0.03 1.89 0.03 7.47E-02
57 11 3358.77 0.06 2.28 0.05 4.74E-02
57 12 3541.99 0.15 – – 1.77E-02
57 14 3902.98 0.03 – – 1.70E-03

58 3 1754.50 0.05 – – 8.47E-04
58 4 1985.59 0.06 – – 2.32E-03
58 5 2206.37 0.10 – – 7.63E-03
58 6 2414.43 0.04 – – 3.53E-03
58 8 2810.20 0.09 – – 3.47E-02
58 9 3002.89 0.04 1.54 0.03 7.05E-02
58 10 3191.71 0.10 – – 7.40E-02

59 3 1765.54 0.03 – – 4.61E-04
59 4 1997.76 0.04 – – 2.98E-03
59 5 2219.60 0.09 – – 7.20E-03
59 6 2428.28 0.15 – – 2.12E-02
59 7 2628.67 0.17 – – 2.89E-02
59 8 2826.02 0.08 1.90 0.06 2.63E-02
59 9 3019.89 0.05 1.56 0.04 6.39E-02
59 11 3395.75 0.14 – – 3.34E-02

60 3 1776.23 0.03 – – 8.53E-04
60 4 2010.20 0.04 – – 3.16E-03
60 5 2232.86 0.08 – – 1.04E-02
60 6 2442.20 0.17 – – 1.74E-02
60 7 2643.84 0.10 2.73 0.08 2.85E-02
60 8 2842.24 0.04 1.89 0.03 4.49E-02
60 9 3036.46 0.08 1.81 0.06 6.28E-02
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60 10 3226.21 0.05 1.97 0.04 7.40E-02
60 11 3413.73 0.06 1.93 0.05 3.32E-02

61 3 1786.97 0.11 – – 1.07E-03
61 4 2022.45 0.03 – – 2.44E-03
61 5 2246.15 0.10 – – 7.90E-03
61 6 2456.04 0.12 – – 2.95E-02
61 7 2658.53 0.09 – – 1.76E-02
61 9 3053.03 0.07 1.97 0.05 8.45E-02
61 10 3243.73 0.05 1.71 0.04 5.51E-02
61 11 3431.73 0.07 – – 2.36E-02

62 3 1797.83 0.08 – – 1.10E-03
62 4 2034.14 0.04 – – 2.91E-03
62 5 2258.77 0.06 – – 1.14E-02
62 6 2469.36 0.10 – – 3.14E-02
62 7 2673.26 0.08 – – 1.64E-02
62 8 2873.64 0.06 1.58 0.05 4.13E-02
62 9 3069.67 0.09 – – 3.69E-02
62 10 3260.91 0.06 1.94 0.05 5.35E-02
62 13 3819.80 0.02 – – 7.08E-04

63 3 1808.33 0.13 – – 1.19E-03
63 4 2046.03 0.04 – – 2.81E-03
63 5 2272.02 0.07 – – 1.17E-02
63 6 2483.39 0.13 – – 3.13E-02
63 8 2889.67 0.05 1.40 0.04 3.64E-02
63 10 3277.80 0.09 – – 4.51E-02
63 11 3467.14 0.02 – – 3.06E-03

64 3 1818.41 0.06 1.99 0.05 9.47E-04
64 4 2057.83 0.05 – – 3.19E-03
64 5 2284.65 0.07 – – 1.23E-02
64 7 2702.74 0.02 0.63 0.02 9.53E-03
64 9 3101.78 0.04 0.97 0.04 4.06E-02
64 10 3295.11 0.10 – – 3.74E-02
64 12 3674.19 0.01 – – 1.89E-03

66 3 1839.31 0.01 – – 1.79E-04
66 4 2081.20 0.05 – – 3.20E-03
66 5 2309.60 0.04 – – 1.21E-02
66 6 2523.23 0.23 – – 2.57E-02
66 8 2935.22 0.09 – – 3.82E-02
66 9 3134.30 0.05 – – 3.19E-02
66 10 3328.86 0.10 – – 2.98E-02

67 3 1849.53 0.09 – – 1.46E-03
67 4 2092.74 0.05 – – 2.84E-03

ℓ n ν FWHM Ptot

67 5 2321.94 0.05 – – 8.89E-03
67 6 2536.68 0.06 – – 4.36E-02
67 7 2745.51 0.10 – – 8.03E-02
67 9 3150.12 0.03 1.29 0.03 4.75E-02

68 3 1859.24 0.08 – – 1.39E-03
68 4 2104.12 0.04 – – 3.52E-03
68 5 2334.21 0.08 – – 1.50E-02
68 6 2549.64 0.09 – – 3.89E-02
68 9 3165.53 0.13 – – 8.15E-02
68 12 3747.80 0.07 – – 3.02E-03

69 3 1869.40 0.07 1.68 0.05 8.47E-04
69 4 2115.36 0.04 – – 4.78E-03
69 5 2346.40 0.07 – – 1.51E-02
69 6 2562.51 0.07 – – 4.78E-02
69 7 2773.82 0.13 – – 9.00E-02

70 4 2126.76 0.05 – – 3.79E-03
70 5 2358.36 0.09 – – 1.70E-02
70 6 2575.64 0.07 – – 4.31E-02
70 7 2787.78 0.13 – – 9.69E-02
70 8 2995.20 0.08 – – 2.59E-02

71 3 1889.08 0.03 0.85 0.03 5.49E-04
71 4 2138.10 0.03 – – 3.64E-03
71 5 2370.15 0.05 – – 1.63E-02
71 6 2588.32 0.06 – – 4.91E-02
71 7 2801.50 0.13 – – 1.18E-01

72 3 1898.55 0.20 – – 1.31E-03
72 4 2149.02 0.04 – – 5.26E-03
72 5 2381.77 0.07 – – 1.78E-02
72 6 2600.99 0.06 – – 4.88E-02
72 7 2815.47 0.14 – – 1.27E-01
72 9 3227.54 0.07 – – 1.81E-02

73 3 1908.56 0.11 – – 1.44E-03
73 4 2159.83 0.05 – – 5.06E-03
73 5 2393.25 0.04 – – 1.92E-02
73 6 2613.72 0.04 – – 6.00E-02
73 9 3242.98 0.07 – – 1.69E-02

74 3 1917.72 0.08 – – 1.41E-03
74 4 2170.85 0.05 – – 5.32E-03
74 5 2405.07 0.05 – – 1.60E-02
74 6 2626.23 0.04 – – 6.37E-02
74 7 2842.95 0.12 – – 1.17E-01
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74 12 3848.22 0.16 – – 7.54E-03

75 3 1927.56 0.12 – – 1.27E-03
75 4 2181.83 0.06 – – 6.00E-03
75 5 2416.74 0.06 – – 2.14E-02
75 6 2638.90 0.07 – – 5.84E-02
75 7 2856.40 0.11 – – 1.16E-01
75 8 3067.39 0.12 – – 2.14E-01

76 3 1936.83 0.09 – – 5.10E-04
76 4 2192.08 0.06 – – 6.10E-03
76 5 2428.07 0.03 – – 2.47E-02
76 6 2651.40 0.05 – – 6.71E-02
76 7 2869.72 0.10 – – 1.34E-01
76 8 3081.41 0.12 – – 1.86E-01

78 3 1955.93 0.10 – – 1.41E-03
78 4 2213.36 0.09 – – 7.71E-03
78 5 2450.44 0.05 – – 2.21E-02
78 6 2675.92 0.07 – – 6.79E-02
78 7 2896.16 0.10 – – 1.32E-01
78 8 3109.51 0.15 – – 1.70E-01
78 10 3522.31 0.05 – – 1.05E-02

79 3 1964.91 0.02 0.61 0.03 3.12E-04
79 4 2223.71 0.12 – – 5.86E-03
79 5 2461.72 0.08 – – 2.31E-02
79 6 2688.01 0.04 – – 6.99E-02
79 7 2909.61 0.07 – – 1.12E-01

80 3 1974.17 0.07 2.26 0.05 1.34E-03
80 4 2234.22 0.10 – – 6.89E-03
80 5 2472.70 0.06 – – 2.43E-02
80 6 2700.29 0.03 – – 5.88E-02
80 7 2922.67 0.07 – – 1.50E-01
80 9 3346.64 0.14 – – 1.13E-01
80 10 3552.91 0.12 – – 1.13E-02

81 2 1705.38 0.04 – – 1.60E-04
81 4 2244.57 0.10 – – 8.50E-03
81 5 2483.53 0.07 – – 2.78E-02
81 6 2712.42 0.05 – – 8.22E-02
81 7 2935.45 0.11 – – 1.46E-01

83 2 1720.75 0.04 – – 2.18E-04
83 4 2264.46 0.10 – – 7.35E-03
83 5 2505.29 0.06 – – 3.11E-02
83 6 2736.30 0.04 – – 6.68E-02

ℓ n ν FWHM Ptot

83 7 2961.25 0.05 – – 1.44E-01
83 10 3595.41 0.03 – – 3.57E-03

84 2 1728.80 0.06 – – 3.15E-04
84 5 2516.26 0.07 – – 3.12E-02
84 6 2748.09 0.05 – – 8.70E-02
84 7 2973.93 0.05 – – 1.62E-01

85 2 1736.19 0.04 – – 2.06E-04
85 4 2284.50 0.06 – – 8.05E-03
85 6 2759.95 0.05 – – 8.38E-02
85 7 2986.51 0.07 – – 1.73E-01

86 2 1743.79 0.07 – – 3.13E-04
86 3 2028.35 0.04 0.85 0.03 1.02E-03
86 4 2294.39 0.16 – – 6.12E-03
86 5 2537.74 0.08 – – 2.92E-02
86 6 2771.63 0.06 – – 8.46E-02
86 7 2999.15 0.06 – – 1.62E-01
86 8 3218.44 0.10 – – 1.53E-01
86 9 3432.59 0.17 – – 1.13E-01

87 2 1751.37 0.06 – – 5.18E-04
87 3 2037.04 0.05 1.21 0.04 1.07E-03
87 5 2548.00 0.06 – – 3.30E-02
87 6 2783.21 0.08 – – 1.01E-01
87 7 3011.76 0.04 – – 1.91E-01
87 8 3231.84 0.12 – – 1.56E-01
87 9 3446.86 0.25 – – 1.08E-01

88 2 1758.73 0.09 – – 3.62E-04
88 3 2045.96 0.05 1.23 0.04 8.93E-04
88 5 2558.58 0.10 – – 3.35E-02
88 6 2794.99 0.05 – – 8.45E-02
88 7 3024.14 0.05 – – 1.49E-01
88 8 3245.16 0.12 – – 1.47E-01

89 2 1766.49 0.03 – – 3.64E-04
89 3 2054.72 0.04 1.25 0.03 8.79E-04
89 6 2806.58 0.04 – – 9.88E-02
89 7 3036.29 0.06 – – 1.82E-01
89 8 3258.21 0.11 – – 1.50E-01

90 3 2063.19 0.09 – – 5.74E-04
90 5 2579.43 0.08 – – 3.17E-02
90 7 3048.66 0.05 – – 1.75E-01
90 8 3271.42 0.10 – – 1.56E-01
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91 2 1781.10 0.04 1.51 0.03 4.63E-04
91 3 2071.70 0.18 – – 1.33E-03
91 5 2589.79 0.06 – – 3.81E-02
91 6 2829.30 0.06 – – 9.61E-02
91 7 3060.95 0.06 – – 2.01E-01
91 8 3284.29 0.07 – – 1.27E-01

92 3 2080.37 0.03 0.75 0.03 6.51E-04
92 6 2840.75 0.05 – – 1.13E-01
92 7 3073.06 0.05 – – 1.49E-01

93 2 1795.70 0.05 1.03 0.04 2.16E-04
93 3 2088.73 0.05 1.27 0.04 6.76E-04
93 6 2852.06 0.05 – – 1.14E-01
93 7 3085.14 0.05 – – 1.92E-01
93 8 3310.05 0.13 – – 1.20E-01
93 9 3529.71 0.17 – – 4.48E-02

94 3 2097.33 0.10 – – 1.05E-03
94 6 2863.22 0.05 – – 1.15E-01
94 7 3097.02 0.05 – – 1.70E-01
94 8 3322.94 0.10 – – 1.29E-01

95 2 1809.61 0.05 1.00 0.04 2.28E-04
95 3 2106.06 0.07 1.83 0.05 1.21E-03
95 4 2378.91 0.04 – – 2.95E-03
95 5 2630.75 0.18 – – 3.04E-02
95 6 2874.46 0.05 – – 1.13E-01
95 7 3109.02 0.06 – – 1.57E-01

96 6 2885.66 0.06 – – 1.11E-01
96 7 3120.85 0.05 – – 1.55E-01
96 8 3348.00 0.15 – – 9.02E-02

97 2 1823.41 0.11 – – 4.85E-04
97 3 2122.31 0.04 0.89 0.04 8.97E-04
97 6 2896.55 0.03 – – 8.19E-02
97 7 3132.51 0.06 – – 1.38E-01

98 2 1830.15 0.04 0.89 0.04 2.71E-04
98 3 2130.74 0.06 – – 8.51E-04
98 6 2907.44 0.13 – – 1.13E-01
98 7 3144.19 0.09 – – 1.78E-01
98 10 3817.69 0.12 – – 6.12E-03

99 2 1837.19 0.09 – – 2.56E-04
99 3 2138.59 0.03 0.93 0.03 8.10E-04
99 6 2918.26 0.05 – – 1.10E-01

ℓ n ν FWHM Ptot

99 7 3155.89 0.09 – – 1.69E-01

100 3 2147.24 0.10 – – 1.23E-03
100 4 2423.75 0.07 – – 3.67E-03
100 6 2929.07 0.12 – – 1.20E-01
100 7 3167.52 0.09 – – 1.68E-01

101 2 1850.76 0.04 1.24 0.03 6.06E-04
101 4 2432.38 0.22 – – 1.09E-02
101 7 3179.12 0.09 – – 1.75E-01

102 2 1857.31 0.02 0.91 0.01 4.47E-04
102 3 2163.06 0.11 – – 9.78E-04
102 4 2441.37 0.06 – – 5.28E-03
102 6 2950.55 0.04 – – 1.42E-01
102 7 3190.68 0.09 – – 1.45E-01
102 8 3422.89 0.15 – – 7.43E-02

103 2 1864.11 0.04 0.91 0.04 4.18E-04
103 6 2961.37 0.08 – – 1.28E-01
103 7 3201.82 0.08 – – 1.79E-01
103 8 3435.22 0.13 – – 8.77E-02

104 4 2458.41 0.07 – – 6.36E-03
104 5 2719.40 0.12 – – 3.60E-02
104 6 2971.84 0.07 – – 1.42E-01
104 7 3213.31 0.10 – – 1.65E-01

105 2 1877.30 0.03 – – 2.84E-04
105 6 2982.33 0.13 – – 1.14E-01
105 7 3224.96 0.11 – – 1.24E-01
105 8 3459.17 0.22 – – 8.37E-02

106 2 1877.32 0.09 – – 6.78E-04
106 7 3236.10 0.12 – – 1.15E-01
106 9 3701.27 0.10 – – 9.04E-03

107 2 1884.35 0.09 – – 7.05E-04
107 3 2202.27 0.09 – – 1.06E-03
107 6 3003.11 0.06 – – 1.33E-01
107 7 3246.95 0.11 – – 1.06E-01

108 2 1896.68 0.07 – – 8.74E-04
108 3 2210.12 0.04 0.89 0.03 1.05E-03
108 6 3013.38 0.15 – – 1.09E-01

109 2 1903.05 0.04 – – 3.35E-04
109 3 2217.52 0.08 – – 1.26E-03
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109 7 3269.47 0.17 – – 9.89E-02
109 8 3507.13 0.23 – – 3.81E-02

110 2 1903.39 0.07 – – 6.12E-04
110 6 3034.17 0.15 – – 1.13E-01
110 7 3280.32 0.12 – – 1.03E-01

111 2 1916.07 0.05 – – 6.71E-04
111 8 3530.83 0.23 – – 5.50E-02

112 2 1922.02 0.07 – – 8.82E-04
112 7 3302.06 0.11 – – 1.10E-01

113 2 1928.51 0.07 – – 9.06E-04
113 4 2533.45 0.10 – – 8.52E-03

115 2 1935.01 0.07 – – 9.26E-04
115 4 2549.39 0.12 – – 5.11E-03
115 6 3084.58 0.18 – – 8.15E-02

116 5 2831.81 0.16 – – 4.22E-02

117 3 2277.42 0.13 – – 2.72E-03
117 7 3355.97 0.14 – – 9.83E-02

118 2 1959.14 0.05 – – 8.95E-04
118 3 2284.58 0.05 1.15 0.04 2.01E-03
118 8 3612.31 0.10 – – 1.08E-02

119 7 3377.59 0.15 – – 6.04E-02
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Appendix C

Modal Frequencies, Widths and

Amplitudes Estimated from the

Low-Resolution Spectra

The following table lists the modal frequency, width and total power estimated from the
low-resolution collapsed spectra, for a selection of modes, namely for ℓ = 50, (10), 600.
Note that no averaging, binning or fitting was performed on the data, these are individual
modal values. Only “valid” widths are listed, see discussion in Chapter 5. The frequencies
(ν), FWHM, and their 1σ uncertainties are listed in µHz. The modal total power (Ptot)
corresponds to the square of the average surface velocity, in (m/s)2.

ℓ n ν FWHM Ptot

50 4 1884.25 0.88 – – 6.02e-04
50 5 2096.52 1.16 – – 1.40e-03
50 6 2298.47 0.94 – – 3.58e-03
50 7 2489.10 0.58 – – 1.17e-02
50 8 2678.27 0.85 – – 2.61e-02
50 9 2862.17 0.78 – – 4.99e-02
50 10 3045.69 0.88 – – 7.17e-02
50 11 3224.68 1.00 – – 6.92e-02
50 12 3401.18 1.41 – – 4.76e-02
50 14 3754.18 2.67 – – 1.88e-02
50 15 3923.89 2.15 – – 1.69e-02
50 16 4091.56 3.22 – – 1.18e-02
50 17 4265.98 2.10 – – 1.08e-02
50 20 4738.58 3.20 26.15 2.53 3.23e-03

ℓ n ν FWHM Ptot

60 3 1772.29 1.15 – – 4.43e-04
60 4 2012.08 1.12 – – 8.65e-04
60 5 2232.87 0.68 – – 3.31e-03
60 6 2442.61 0.70 – – 9.21e-03
60 7 2643.89 0.69 – – 2.17e-02
60 8 2843.56 0.65 – – 4.71e-02
60 9 3036.43 0.76 – – 7.12e-02
60 10 3226.78 0.65 – – 7.13e-02
60 11 3414.16 0.87 – – 5.54e-02
60 12 3598.87 1.00 – – 3.68e-02
60 13 3781.58 2.50 – – 2.20e-02
60 14 3961.82 0.91 – – 2.53e-02

70 3 1881.46 0.51 – – 4.20e-04
70 4 2127.28 0.44 – – 1.60e-03

Table C.1: Modal frequency, width and total power estimated from the low resolution
collapsed spectra
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70 5 2357.48 0.61 – – 5.92e-03
70 6 2575.31 0.59 – – 1.75e-02
70 7 2787.92 0.53 – – 3.88e-02
70 8 2996.08 0.70 – – 6.44e-02
70 9 3196.21 0.64 – – 7.29e-02
70 10 3394.98 0.71 – – 5.54e-02
70 11 3589.77 0.79 – – 3.94e-02
70 12 3782.31 0.90 – – 2.73e-02
70 13 3972.06 1.49 – – 1.97e-02
70 14 4159.46 1.17 – – 1.59e-02

80 3 1972.08 0.51 – – 6.93e-04
80 4 2233.26 0.48 – – 3.11e-03
80 5 2471.93 0.48 – – 1.06e-02
80 6 2700.20 0.40 – – 2.68e-02
80 7 2923.59 0.55 – – 5.58e-02
80 8 3137.27 0.57 – – 7.61e-02
80 9 3346.63 0.61 – – 6.34e-02
80 10 3552.37 0.63 – – 3.98e-02
80 11 3754.53 0.72 – – 3.13e-02
80 12 3953.78 0.98 – – 2.19e-02
80 13 4150.66 1.15 – – 1.82e-02
80 14 4344.19 2.45 – – 1.14e-02
80 15 4535.98 2.88 – – 7.72e-03

90 2 1769.86 1.18 25.58 0.78 4.84e-04
90 3 2062.85 0.58 – – 1.22e-03
90 4 2332.76 0.52 – – 5.38e-03
90 5 2580.26 0.49 – – 1.72e-02
90 6 2817.76 0.46 – – 4.26e-02
90 7 3048.44 0.53 – – 6.93e-02
90 8 3271.83 0.58 – – 6.87e-02
90 9 3489.53 0.53 – – 4.77e-02
90 10 3701.26 0.77 7.83 2.07 3.19e-02
90 11 3912.68 0.75 15.23 1.10 2.52e-02
90 12 4116.85 0.84 21.29 0.95 2.00e-02
90 13 4321.03 1.07 – – 1.35e-02
90 14 4520.40 1.89 – – 9.52e-03

100 2 1847.15 0.52 – – 3.97e-04
100 3 2146.50 0.31 – – 1.97e-03
100 4 2424.08 0.37 – – 8.16e-03
100 5 2680.16 0.42 – – 2.68e-02
100 6 2929.68 0.35 – – 5.64e-02
100 7 3167.57 0.51 – – 7.32e-02
100 8 3397.93 0.47 – – 5.45e-02
100 9 3624.26 0.46 11.26 0.82 3.74e-02
100 10 3844.89 0.61 17.82 0.73 2.70e-02

ℓ n ν FWHM Ptot

100 11 4060.84 0.70 21.71 0.73 2.10e-02
100 12 4273.79 0.95 26.61 0.86 1.60e-02
100 13 4481.57 1.12 33.50 0.87 1.18e-02
100 14 4688.73 3.67 – – 5.63e-03

110 2 1909.00 0.62 15.68 0.58 6.25e-04
110 3 2226.00 0.25 – – 2.97e-03
110 4 2508.94 0.36 – – 1.25e-02
110 5 2776.41 0.45 – – 3.68e-02
110 6 3034.57 0.57 – – 6.76e-02
110 7 3279.49 0.54 – – 6.68e-02
110 8 3518.09 0.47 – – 4.58e-02
110 9 3752.30 0.54 12.99 0.81 3.15e-02
110 10 3979.88 0.55 25.66 0.47 2.41e-02
110 11 4202.82 0.60 25.22 0.54 1.80e-02
110 12 4420.63 1.01 37.27 0.69 1.32e-02
110 13 4636.86 1.47 39.69 0.98 8.66e-03
110 14 4849.32 2.86 – – 4.59e-03

120 2 1970.00 0.50 – – 8.11e-04
120 3 2298.36 0.51 8.20 0.88 4.55e-03
120 4 2589.45 0.42 – – 1.90e-02
120 5 2868.15 0.53 – – 4.72e-02
120 6 3134.31 0.49 – – 7.09e-02
120 7 3387.75 0.38 – – 5.69e-02
120 8 3635.09 0.52 17.00 0.58 3.74e-02
120 9 3875.46 0.51 23.83 0.44 2.60e-02
120 10 4110.53 0.49 31.97 0.35 2.07e-02
120 11 4338.91 0.86 41.47 0.53 1.60e-02
120 12 4563.52 0.81 41.66 0.51 1.13e-02
120 13 4783.99 2.18 32.38 1.65 5.98e-03

130 2 2031.25 0.26 – – 1.16e-03

130 4 2666.99 0.20 – – 2.38e-02
130 5 2956.37 0.42 – – 5.63e-02
130 6 3227.71 0.52 – – 6.69e-02
130 7 3490.78 0.51 13.33 0.66 4.76e-02
130 8 3746.04 0.47 20.37 0.43 3.11e-02
130 9 3993.51 0.49 30.01 0.35 2.37e-02
130 10 4235.12 0.47 36.65 0.30 1.82e-02
130 11 4470.51 0.53 45.98 0.30 1.34e-02
130 12 4703.10 1.51 42.33 0.91 7.94e-03
130 13 4931.52 3.35 17.57 4.14 3.42e-03

140 2 2088.70 0.50 – – 1.37e-03
140 3 2433.37 0.38 11.69 0.46 8.82e-03
140 4 2741.34 0.44 8.83 0.71 3.26e-02
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140 5 3039.49 0.38 – – 6.34e-02
140 6 3319.83 0.27 – – 6.18e-02
140 7 3589.62 0.51 20.56 0.44 4.22e-02
140 8 3853.18 0.47 29.03 0.33 2.83e-02
140 9 4107.42 0.50 38.62 0.29 2.17e-02
140 10 4354.02 0.64 47.58 0.34 1.56e-02
140 11 4596.48 0.86 49.54 0.46 1.06e-02
140 12 4834.89 2.80 42.77 1.66 5.27e-03

150 1 1762.14 0.50 17.62 0.39 3.74e-04
150 2 2144.05 0.19 – – 1.71e-03
150 3 2493.40 0.39 12.26 0.44 1.14e-02
150 4 2812.97 0.23 – – 3.70e-02
150 5 3119.00 0.47 – – 6.71e-02
150 6 3406.07 0.41 8.64 0.73 5.43e-02
150 7 3685.76 0.43 21.55 0.36 3.48e-02
150 8 3955.71 0.36 28.12 0.25 2.42e-02
150 9 4217.62 0.51 42.49 0.28 1.82e-02
150 10 4470.38 0.64 48.07 0.34 1.30e-02
150 11 4718.51 1.20 55.59 0.60 8.22e-03
150 12 4963.76 3.71 31.64 2.64 3.33e-03

160 1 1806.64 0.62 – – 2.62e-04
160 2 2196.91 0.36 8.07 0.57 2.44e-03
160 3 2552.47 0.12 – – 1.34e-02
160 4 2881.20 0.31 – – 4.49e-02

160 6 3491.18 0.46 18.95 0.40 4.77e-02
160 7 3778.19 0.32 20.48 0.27 2.94e-02
160 8 4054.84 0.40 35.10 0.24 2.19e-02
160 9 4322.79 0.49 46.11 0.26 1.67e-02
160 10 4582.85 0.71 56.33 0.35 1.11e-02
160 11 4837.75 1.42 62.80 0.67 6.86e-03

170 1 1851.55 0.00 – – 2.82e-04
170 2 2247.22 0.31 8.71 0.46 3.14e-03
170 3 2607.71 0.44 13.95 0.44 1.86e-02
170 4 2947.36 0.34 – – 4.99e-02
170 5 3268.43 0.35 – – 6.33e-02
170 6 3573.22 0.46 23.13 0.34 4.18e-02
170 7 3867.26 0.38 31.00 0.23 2.83e-02
170 8 4150.61 0.42 40.51 0.23 2.05e-02
170 9 4426.01 0.53 53.06 0.26 1.47e-02
170 10 4691.43 0.92 63.96 0.43 9.23e-03

180 1 1891.77 0.57 – – 4.40e-04
180 2 2298.15 0.39 15.95 0.33 4.05e-03
180 3 2662.72 0.35 12.64 0.37 2.22e-02

ℓ n ν FWHM Ptot

180 4 3011.61 0.27 – – 5.48e-02
180 5 3338.16 0.29 8.47 0.47 5.77e-02
180 6 3652.08 0.45 24.86 0.31 3.64e-02
180 7 3953.20 0.40 35.59 0.23 2.49e-02
180 8 4243.85 0.39 48.40 0.20 1.86e-02
180 9 4524.60 0.60 62.15 0.28 1.29e-02
180 10 4797.78 1.16 71.98 0.52 7.75e-03

190 1 1931.46 0.34 – – 5.37e-04
190 2 2345.88 0.40 13.61 0.38 4.80e-03
190 3 2714.84 0.20 – – 2.38e-02
190 4 3074.06 0.20 – – 5.84e-02
190 5 3407.10 0.40 18.33 0.33 5.28e-02
190 6 3728.88 0.35 25.37 0.24 3.17e-02
190 7 4037.41 0.42 38.61 0.22 2.23e-02
190 8 4334.85 0.58 55.02 0.27 1.64e-02
190 9 4620.64 0.69 64.89 0.31 1.09e-02
190 10 4900.85 1.93 68.96 0.87 5.74e-03

200 1 1967.04 0.21 11.70 0.23 8.12e-04
200 2 2392.36 0.28 7.19 0.48 5.66e-03
200 3 2766.07 0.21 – – 2.82e-02
200 4 3133.14 0.44 12.05 0.49 6.16e-02
200 5 3473.97 0.42 21.64 0.31 4.87e-02
200 6 3803.41 0.37 32.80 0.21 3.01e-02
200 7 4118.44 0.39 43.69 0.20 2.13e-02
200 8 4421.91 0.43 54.34 0.20 1.47e-02
200 9 4715.48 0.92 69.61 0.40 9.17e-03
200 10 5005.21 2.04 74.02 0.89 4.78e-03

210 1 2004.13 0.38 14.79 0.33 8.85e-04
210 2 2438.07 0.16 – – 6.51e-03
210 3 2816.49 0.29 11.06 0.34 3.41e-02
210 4 3189.80 0.23 – – 6.19e-02
210 5 3539.14 0.41 25.73 0.27 4.39e-02
210 6 3876.13 0.33 33.27 0.18 2.75e-02
210 7 4197.74 0.40 47.33 0.19 1.92e-02
210 8 4507.77 0.53 63.38 0.23 1.31e-02
210 9 4806.84 1.08 77.54 0.46 7.91e-03

220 1 2040.03 0.43 14.38 0.38 1.03e-03
220 2 2481.36 0.40 20.81 0.28 8.85e-03
220 3 2866.38 0.32 15.04 0.29 3.76e-02
220 4 3245.66 0.41 17.84 0.33 6.10e-02
220 5 3602.94 0.43 27.11 0.27 4.02e-02
220 6 3945.66 0.38 39.06 0.20 2.51e-02
220 7 4274.96 0.51 55.32 0.23 1.85e-02
220 8 4591.00 0.75 73.73 0.32 1.22e-02
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220 9 4896.52 1.09 81.13 0.46 6.49e-03

230 1 2072.95 0.50 14.63 0.43 1.17e-03
230 2 2522.27 0.23 7.91 0.35 9.83e-03
230 3 2915.32 0.33 14.95 0.29 4.10e-02
230 4 3300.19 0.31 16.87 0.26 5.63e-02
230 5 3664.69 0.31 28.64 0.18 3.59e-02
230 6 4014.76 0.34 41.70 0.17 2.42e-02
230 7 4350.16 0.38 57.39 0.17 1.66e-02
230 8 4672.40 0.99 80.13 0.41 1.07e-02
230 9 4985.67 3.08 77.24 1.31 4.64e-03

240 1 2106.24 0.44 17.39 0.33 1.45e-03
240 2 2563.24 0.39 20.76 0.27 1.23e-02
240 3 2963.79 0.30 15.09 0.27 4.36e-02
240 4 3352.61 0.20 15.96 0.17 5.37e-02
240 5 3725.52 0.32 30.66 0.18 3.23e-02
240 6 4082.76 0.37 46.30 0.18 2.28e-02
240 7 4423.70 0.49 63.07 0.21 1.53e-02
240 8 4751.01 0.98 85.13 0.41 9.52e-03
240 9 5073.36 3.11 79.35 1.32 4.18e-03

250 1 2138.03 0.52 20.72 0.34 1.63e-03
250 2 2602.25 0.16 5.11 0.37 1.28e-02
250 3 3011.68 0.23 13.65 0.22 4.56e-02
250 4 3404.04 0.27 17.77 0.21 5.04e-02
250 5 3785.18 0.36 33.53 0.19 3.09e-02
250 6 4148.00 0.33 50.35 0.15 2.11e-02
250 7 4495.19 0.45 68.96 0.19 1.39e-02
250 8 4828.86 1.90 88.15 0.78 7.55e-03

260 1 2168.85 0.41 19.18 0.28 1.84e-03
260 2 2639.26 0.34 20.15 0.23 1.64e-02
260 3 3058.75 0.17 11.28 0.19 4.73e-02
260 4 3454.94 0.34 24.20 0.21 4.81e-02
260 5 3842.57 0.28 36.19 0.14 2.87e-02
260 6 4211.47 0.49 57.57 0.22 2.02e-02
260 7 4565.31 0.70 73.95 0.29 1.24e-02
260 8 4905.43 1.53 92.57 0.63 6.72e-03

270 1 2199.15 0.33 17.08 0.25 2.07e-03
270 2 2676.79 0.35 20.96 0.23 1.80e-02
270 3 3104.78 0.28 18.73 0.21 5.00e-02
270 4 3505.45 0.37 26.82 0.22 4.52e-02
270 5 3898.82 0.32 39.88 0.16 2.76e-02
270 6 4273.73 0.29 58.51 0.13 1.82e-02
270 7 4634.07 0.88 82.30 0.36 1.16e-02
270 8 4980.82 1.83 98.47 0.74 5.58e-03

ℓ n ν FWHM Ptot

280 1 2229.48 0.22 11.82 0.22 2.16e-03
280 2 2712.49 0.30 20.22 0.21 1.98e-02
280 3 3149.44 0.37 23.26 0.23 5.28e-02
280 4 3555.09 0.36 29.61 0.20 4.22e-02
280 5 3954.60 0.31 43.90 0.15 2.61e-02
280 6 4335.61 0.42 65.10 0.18 1.76e-02
280 7 4700.22 0.95 88.56 0.39 1.06e-02
280 8 5056.63 2.79 92.79 1.14 4.53e-03

290 1 2258.91 0.10 6.61 0.17 2.46e-03
290 2 2747.32 0.20 16.66 0.16 2.09e-02
290 3 3192.20 0.28 20.17 0.20 4.96e-02
290 4 3603.71 0.39 32.30 0.21 3.88e-02
290 5 4008.50 0.32 47.44 0.15 2.50e-02
290 6 4395.81 0.51 69.26 0.21 1.66e-02
290 7 4765.96 1.15 94.50 0.47 9.64e-03

300 1 2288.70 0.31 16.00 0.25 2.87e-03
300 2 2781.04 0.16 16.30 0.13 2.19e-02
300 3 3236.26 0.25 20.37 0.17 4.94e-02
300 4 3652.47 0.35 33.16 0.18 3.57e-02
300 5 4062.18 0.33 50.86 0.15 2.43e-02
300 6 4454.82 0.60 76.54 0.25 1.57e-02
300 7 4831.79 1.64 101.6 0.66 8.51e-03

310 1 2316.84 0.39 22.25 0.25 3.41e-03
310 2 2813.68 0.15 14.97 0.12 2.35e-02
310 3 3277.32 0.35 26.02 0.21 4.88e-02
310 4 3699.90 0.33 36.77 0.17 3.35e-02
310 5 4114.97 0.36 56.90 0.16 2.30e-02
310 6 4513.43 0.58 79.11 0.24 1.45e-02

320 1 2344.19 0.24 18.45 0.17 3.65e-03
320 2 2846.52 0.15 16.39 0.12 2.60e-02
320 3 3318.60 0.22 22.21 0.14 4.60e-02
320 4 3747.45 0.24 37.27 0.12 3.14e-02
320 5 4166.38 0.31 59.65 0.13 2.19e-02
320 6 4569.66 0.82 87.07 0.33 1.36e-02
320 7 4958.35 2.32 108.4 0.92 6.31e-03

330 0 1827.42 1.04 – – 1.56e-04
330 1 2372.70 0.16 11.06 0.17 3.55e-03
330 2 2878.78 0.17 18.45 0.12 2.64e-02
330 3 3358.21 0.33 27.95 0.18 4.58e-02
330 4 3794.64 0.29 41.64 0.14 2.91e-02
330 5 4217.29 0.36 62.92 0.15 2.02e-02
330 6 4625.07 1.04 89.52 0.42 1.18e-02
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330 7 5022.86 2.28 111.6 0.90 5.52e-03

340 1 2399.76 0.34 23.68 0.20 4.38e-03
340 2 2910.65 0.23 22.56 0.14 2.84e-02
340 3 3397.33 0.31 29.11 0.17 4.50e-02
340 4 3841.15 0.30 45.19 0.14 2.85e-02
340 5 4268.35 0.46 66.30 0.19 1.91e-02
340 7 5084.95 4.31 104.8 1.72 4.46e-03

350 1 2426.41 0.24 21.54 0.15 4.62e-03
350 2 2941.62 0.26 23.57 0.16 3.08e-02
350 3 3435.46 0.22 27.98 0.13 4.15e-02
350 4 3886.96 0.28 46.18 0.13 2.76e-02
350 5 4317.79 0.43 71.64 0.18 1.85e-02
350 6 4733.94 1.60 106.5 0.63 1.09e-02

360 0 1905.49 0.43 17.92 0.31 3.35e-04
360 1 2453.73 0.13 18.54 0.09 5.09e-03
360 2 2971.56 0.32 26.66 0.18 3.24e-02
360 3 3472.14 0.30 33.12 0.16 4.15e-02
360 4 3931.79 0.29 50.65 0.13 2.58e-02
360 5 4366.54 0.48 76.90 0.20 1.71e-02
360 6 4788.43 2.17 107.0 0.86 8.95e-03

370 0 1934.14 0.16 13.99 0.14 3.58e-04
370 1 2479.43 0.33 24.80 0.19 5.97e-03
370 2 3001.48 0.36 28.44 0.20 3.24e-02
370 3 3509.26 0.31 35.16 0.15 3.96e-02
370 4 3976.15 0.32 54.76 0.14 2.52e-02
370 5 4414.95 0.55 84.25 0.22 1.64e-02
370 6 4841.26 2.21 113.1 0.87 8.77e-03

380 0 1957.69 1.09 10.98 1.17 3.18e-04
380 1 2505.78 0.14 22.41 0.09 5.88e-03
380 2 3031.14 0.30 28.25 0.17 3.31e-02
380 3 3544.84 0.27 36.84 0.13 3.75e-02
380 4 4020.59 0.37 58.39 0.16 2.42e-02
380 5 4464.10 0.72 86.81 0.29 1.56e-02
380 6 4894.99 2.67 118.0 1.05 7.52e-03

390 0 1985.88 0.46 23.68 0.28 5.36e-04
390 1 2532.47 0.23 23.76 0.14 6.15e-03
390 2 3060.43 0.21 25.73 0.12 3.23e-02
390 3 3580.11 0.23 36.63 0.11 3.47e-02
390 4 4063.30 0.31 60.83 0.13 2.25e-02
390 5 4511.20 0.73 89.94 0.29 1.38e-02
390 6 4945.66 3.59 126.9 1.41 6.65e-03

ℓ n ν FWHM Ptot

400 0 2013.25 0.64 13.26 0.59 4.13e-04
400 1 2557.27 0.28 26.50 0.15 6.62e-03
400 2 3089.73 0.22 28.23 0.12 3.16e-02
400 3 3614.57 0.18 37.24 0.09 3.22e-02
400 4 4105.94 0.34 64.27 0.14 2.15e-02
400 5 4559.07 1.22 99.09 0.49 1.32e-02

410 0 2033.02 0.18 – – 4.20e-04
410 1 2583.12 0.21 26.68 0.12 7.01e-03
410 2 3118.97 0.33 31.01 0.17 3.22e-02
410 3 3648.24 0.22 40.87 0.10 3.09e-02
410 4 4146.91 0.24 66.34 0.10 1.97e-02
410 5 4605.05 1.37 101.3 0.54 1.17e-02
410 6 5050.59 3.63 121.9 1.42 4.72e-03

420 0 2061.21 1.02 11.47 1.05 4.43e-04
420 1 2608.18 0.26 29.39 0.14 7.33e-03
420 2 3147.21 0.35 32.57 0.18 3.12e-02
420 3 3681.76 0.25 43.45 0.12 2.88e-02
420 4 4187.74 0.34 72.28 0.14 1.91e-02
420 5 4648.94 1.83 105.8 0.72 1.04e-02

430 0 2086.35 0.99 26.09 0.56 6.10e-04
430 1 2633.64 0.21 28.28 0.11 7.46e-03
430 2 3175.21 0.26 31.39 0.14 2.88e-02
430 3 3715.31 0.24 46.80 0.11 2.72e-02
430 4 4228.13 0.28 75.75 0.12 1.84e-02
430 5 4697.32 2.14 110.3 0.84 9.40e-03

440 0 2108.61 0.82 15.22 0.67 5.09e-04
440 1 2657.82 0.26 31.41 0.13 7.74e-03
440 2 3204.00 0.25 32.97 0.13 2.79e-02
440 3 3747.81 0.21 48.23 0.09 2.49e-02
440 4 4267.69 0.30 81.99 0.12 1.69e-02
440 5 4739.75 3.19 119.7 1.25 8.59e-03

450 0 2132.20 0.85 25.96 0.48 6.09e-04
450 1 2682.89 0.14 30.73 0.07 7.65e-03
450 2 3232.01 0.31 34.91 0.15 2.63e-02
450 3 3780.47 0.26 52.02 0.11 2.36e-02
450 4 4307.00 0.52 83.45 0.21 1.54e-02
450 5 4785.61 3.57 123.5 1.39 7.54e-03

460 0 2156.21 1.81 26.74 1.01 6.52e-04
460 1 2707.24 0.28 33.07 0.14 7.88e-03
460 2 3259.50 0.30 34.54 0.15 2.42e-02
460 3 3812.71 0.20 55.16 0.09 2.19e-02
460 4 4344.28 0.52 95.87 0.21 1.51e-02
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460 5 4830.29 4.45 127.7 1.74 6.69e-03

470 0 2180.68 1.93 31.22 0.99 7.14e-04
470 1 2731.17 0.22 33.37 0.11 7.71e-03
470 2 3286.68 0.25 37.11 0.12 2.32e-02
470 3 3844.26 0.15 57.56 0.06 2.04e-02
470 4 4382.56 0.90 95.14 0.36 1.31e-02

480 0 2201.11 1.89 34.55 0.93 7.98e-04
480 1 2754.36 0.24 33.67 0.12 7.50e-03
480 2 3313.88 0.32 39.70 0.15 2.17e-02
480 3 3875.07 0.18 59.53 0.08 1.88e-02
480 4 4418.30 1.09 103.4 0.43 1.19e-02

490 0 2225.17 1.66 29.81 0.87 7.04e-04
490 1 2779.28 0.23 33.54 0.11 7.25e-03
490 2 3341.56 0.30 39.66 0.14 1.99e-02
490 3 3906.42 0.21 65.22 0.09 1.75e-02
490 4 4454.48 1.16 108.0 0.46 1.10e-02

500 0 2245.44 1.64 32.65 0.83 7.45e-04
500 1 2802.41 0.27 38.03 0.13 7.22e-03
500 2 3368.63 0.29 41.42 0.14 1.77e-02
500 3 3937.53 0.21 66.12 0.09 1.60e-02
500 4 4490.99 1.64 108.0 0.65 9.55e-03

510 0 2273.20 2.25 27.12 1.24 5.79e-04
510 1 2826.01 0.33 38.64 0.15 7.11e-03
510 2 3395.31 0.38 43.92 0.17 1.72e-02
510 3 3968.12 0.25 68.01 0.10 1.45e-02
510 4 4524.96 2.11 114.7 0.82 8.88e-03

520 1 2849.36 0.35 38.80 0.17 6.51e-03
520 2 3422.08 0.31 43.24 0.14 1.48e-02
520 3 3998.84 0.33 73.04 0.13 1.29e-02
520 4 4560.09 2.53 121.3 0.99 7.74e-03

ℓ n ν FWHM Ptot

530 0 2311.59 1.90 33.03 0.95 8.55e-04
530 1 2872.99 0.37 42.15 0.17 6.41e-03
530 2 3448.83 0.37 45.46 0.17 1.39e-02
530 3 4028.93 0.24 75.12 0.10 1.20e-02
530 4 4589.85 3.71 137.6 1.44 7.54e-03

540 0 2336.38 2.55 30.16 1.33 5.96e-04
540 1 2895.31 0.33 40.77 0.15 5.87e-03
540 2 3475.06 0.32 46.99 0.14 1.17e-02
540 3 4058.67 0.33 79.44 0.13 1.02e-02

550 0 2359.42 3.21 39.71 1.50 7.75e-04
550 1 2918.71 0.55 44.19 0.25 5.92e-03
550 2 3501.70 0.36 49.27 0.16 1.11e-02
550 3 4089.47 0.42 83.68 0.17 9.77e-03

560 1 2941.94 0.50 41.15 0.23 5.30e-03
560 2 3528.08 0.30 52.69 0.13 1.00e-02
560 3 4119.31 0.42 84.23 0.17 8.23e-03

570 1 2964.64 0.51 42.83 0.23 4.86e-03
570 2 3554.45 0.30 53.85 0.13 8.88e-03
570 3 4149.16 0.45 86.88 0.18 7.27e-03

580 1 2986.73 0.87 50.90 0.38 4.94e-03
580 2 3580.76 0.27 55.42 0.12 7.82e-03
580 3 4180.15 0.60 93.25 0.24 6.98e-03

590 1 3008.75 0.81 45.16 0.36 4.06e-03
590 2 3606.89 0.32 57.01 0.14 6.53e-03
590 3 4209.48 0.54 97.03 0.21 5.48e-03

600 1 3030.79 0.82 47.83 0.36 3.91e-03
600 2 3633.07 0.18 60.98 0.07 6.88e-03
600 3 4239.18 0.71 100.6 0.28 5.83e-03
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