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ABSTRACT

In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a
diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable
to have a simple analytical framework for describing planetary structures. The variational principle is a
fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its
action. It is alternative to the differential equation formulation of a physical system. Applying the variational
principleto theplanetary interior can beautifully summarize the set of differential equations into one, which
provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of
theerror propagation from theequation of state to themass–radius relation, and a form of the virial theorem
applicable to planetary interiors are derived.

Key words: planets and satellites: composition – planets and satellites: fundamental parameters – planets and
satellites: general – planets and satellites: interiors – planets and satellites: physical evolution – planets and
satellites: terrestrial planets

1. INTRODUCTION

As a fundamental principle, the variational principle bears
many applications in mathematics and physics. In classical
mechanics, treating time as the independent variable, one could
describe the motion of a physical system by Newton’s Second
Law, which boils down to solving a set of coupled differential
equations. However, in the 18th and 19th century, an
alternative approach was developed based on defining an
action for the system as an integral from the initial state to the
final state of variable time. The minimization of this action
gives the unique evolutionary trajectory of the system in
spacetime. Furthermore, it could be easily transformed into the
differential equation point of view as the Euler–Lagrange
equation, which is usually a second-order differential equation,
or equivalently, the Hamilton Canonical equations, which are a
pair of first-order symplectic differential equations.

In this paper, we adopt this idea and apply it to the interior of
planets. Instead of treating time as the independent variable as
in mechanics, here we treat mass m, which is the mass enclosed
within radius r as the independent variable. Furthermore, the
volume ω enclosed in r is taken as the dependent variable
where spherical symmetry is assumed. The planet is also
assumed to be in a stationary state thatevolves slowly so that at
every instant its interior is in detailed balance.

Then we derive the action, and the equivalence of the Euler–
Lagrange Equation, for the planetary interior. Applying this
equation to various equations of state (EOSs) gives us
interesting and useful results. Some of the results repeat the
results ofprevious works, such as those of polytrope EOS, but
in a simpler and neater way, and some of the results are new,
such as a universal mass–radius relation for a two-layer rocky
planet, and a form of thevirial theorem applicable to planetary
interiors.

In particular, an emphasis is placed on the power-law EOS,
which is equivalent of the polytropic EOS used to derive Lane–
Emden equations in astrophysics. The polytropes were
important in developing the early theories of stellar interior
structures in the early 20th century(Eddington 1926; Chan-
drasekhar 1939; Cox & Giuli 1968)because, back then, a large

quantity of stars were observed but with limited measurement
accuracies. Many important results and scaling relations were
obtained by applying the polytropes to the ensemble of stars.
The situation is now similar becausemany exoplanets are
observed, but with limited accuracies. Thus, the polytrope
approach, and modification of which, shall remain valuable
when applied to the ensemble of exoplanets, in order to
understand their classifications and general properties.

2. DERIVING A GENERAL EQUATION OF
PLANETARY INTERIOR

In classical mechanics, the independent variable is time t,
and the dependent variable is the coordinate in space, such as x.
The first-order time derivative of x is denoted as ẋ
(velocity).Lagrangian L=T(ẋ)-V(x), where the kinetic energy
T is a function of ẋand the potential energy V is a function
of x.
For theplanetary interior, the independent variable is mass m

and the dependent variable is volume ω = pr4

3
3( ) chosen for the

sake of simplicity. The first-order derivative of ω with respect
to m is denoted as w = =wd

dm
˙ specific volume =

r
v 1 . Then, the

question reduces to finding the appropriate action that can
describe the system. The key here is to realize that the total
action corresponds to the (negative) total energy of the system
(the action generally has the dimension of energy multiplied by
time;however, since here we are considering astationary
system, the time can be removed, and the variational principle
can be directly applied to the energy. One can also view it from
the minimization of theenergy point ofview, as soon as the
system approaches the minimum energy state, it becomes
stationary). Then, the sum of specific energies inside the
integral shall be the (negative) Lagrangian. The energy shall
include both the potential energy due to gravitational pull and
the elastic energy due to compression (later on, the terms
describing the thermal energy and the rotational energy can be
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added):
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where u is the specific elastic energy due to compression. It
should be stationary with the appropriate functional depend-
ence of ω on m. Comparing it to the familiar definition of action

in classical mechanics ò=
=

=
S L t x x dt; ,

t t

t t

1

2
( ˙) , the Lagrangian

of the planetary interior can be identified as (thenegative sign
is introduced for convinience):

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟w w w

w
= - - = - -

p

L m u
Gm

r
u

Gm
; , . 2

3

4

1
3 1

3( )
( ˙ ) ( ˙ )

·
( )

Applying the Euler–Lagrange equation to Equation (2):
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This single second-order differential equation is equivalent
to the two first-order differential equations (mass conservation
and pressure balance) that are usually used to calculate
planetary interiors, just as the Euler–Lagrange equation is
equivalent to the Hamilton canonical equations. It is solved
with the EOS (functional dependence of u on ẇ,

w w =
w w

u ud

d

d

d( )( ˙ ) · ( ˙ )
˙ ˙

) and the following boundary condi-
tions:

⎧
⎨⎪

⎩⎪

w

w

=

= =
r

M v

0 0, volume is zero at the center

, density is uncompressed at the surface,

since there is no pressure

0
1

0

( )
˙ ( )

Equation (4) can be cast into variables that people are more
familiar with:

p
=- ¢ = -

=- = -
r

Gm

r
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dP v
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It is no more than the pressure balance equation, written in
variable m instead of r.

2.1. Implementation of EOS

In principle, EOS expressed as the functional dependence of
specific internal energy u(v ) on specific volume v could assume
any general functional form. Pressure is related as

⎛
⎝⎜

⎞
⎠⎟r= = - ¢P v P u v

1
. 6( ) ( ) ( )

Because P=0 at the surface of planet, ¢ =u v 00( ) always.

The bulk modulus K is

º - = - =
¢

= K
dP

dlnv

vdP

dv
v

du v

dv
v u v . 7· ( ) · ( ) ( )

The relation between the bulk modulus at zero pressure (K0),
the specific internal energy u(v), and the specific volume at zero

pressure =
r

v0
1

0
( ) isthus

r=   = =K v u v u v
K

v
Kor . 80 0 0 0

0

0
0 0· ( ) ( ) ( )

Many material EOSs used in Earth sciences and astrophysics
are parametrized by K0 (bulk modulus at zero pressure) and ρ0
(uncompressed density), since they are readily determined by
laboratory experiments. It will be convenient to non-dimensio-
nalize Equation (4) with respect to them, so the solutions can be
scaled with different K0 and ρ0. This is particularly useful for
the power-law EOS and Birch–Murnaghan EOS to be
discussed in upcoming sections.

2.2. Non-dimensionalization of the General Equation

Assume the EOS can be expressed in the following form:

h
h= -

¢
P

K
f

1
, 90

( )
· ( ) ( )

where η is a function of = =r
r

f v

v
0

0( ),which is the fractional

compression ( f�1). η(1)=0. With the substitutions of

variables as

⎧
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4
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·

, so y is differen-

tiated with respect to x, = = =wy x fdy

dx v0
˙ ( ) ˙ , and

r = h
h
¢
¢

u v K f
0 0 1

( ) · · ( )
( ) , Equation (4) then transforms to the

following dimensionless form:

h
h
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1
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where thedimensionless constant C is defined as
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The dimensionless number C will later beshown to be very
important because it dictates the regimes of solutions one
would get, just as the dimensionless Reynolds number Re does
for the non-dimensionalization and scaling of the Navier–
Stokes equation in fluid dynamics. Thus,it tells us how to scale
from one solution properly to get the solutions of many other
similar cases, without solving each case separately. This “self-
similar” solution approach will be explored extensively when
we apply Equation (4) or (10) to power-law EOSs in the next
section.
Then, the non-dimensionalized boundary conditions

become
⎧⎨⎩

=
=

y
y

0 0,
1 1.

( )
˙ ( )

Equation (10) can be solved by theshooting method: first
guess an initial value of y(1), then integrate inward to find y(0).
If ¹y 0 0( ) , thenadjust the initial guess of y(1) and iterate.

2
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Given the same η( f ), solution y(x) only depends on C.

Thus, º =
rp

y y 1
R

M1

4

3
3

0( ) only depends on C. Define this

dependence asy1(C). Since radius
⎡
⎣⎢

⎤
⎦⎥=

pr
R y CM3

4 1
0

1
3( ) , if y1(C)

can be calculated or estimated, it gives the mass–radius relation
and can derive the propagation of perturbations in K0 or ρ0 onto
themass–radius relation. y1(C) should behave as follows.

• When C 0, no compression, y 11 , so y1(0)=1.
• When  ¥C , infinite compression, y 01 , so ¥ =y 01( ) .
• If η( f ) is smooth (well-behaved), y1(C) should also be
smooth.

For large C (C10), solution y(x) will become self-similar
as one of the boundary conditions can be loosened ( =y 1 1˙ ( )
can be loosened to ~y 1 1˙ ( ) , because the not-so-much-
compressed surface layer is thin enough compared to the
much-compressed bulk planet). This fact is especially useful
for massive planets.

3. SIMPLE POWER-LAW EOS

The simple power-law EOShas the following form.

⎡
⎣
⎢⎢

⎛
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r
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0
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equivalently, h = -- +f f 1k 1( ) ( ) . Thus,h¢ = - +f k 1( ) ( )·
- +f k 2( ) and h¢ = - +k1 1( ) ( ).
It is similar to the polytropic EOS in theLane–Emden

equation,where rµ +P 1 n
1( ) andthe polytropic index =n

k

1 .
Equation (10) then becomes

= - +C x y y y¨ . 13k 2 4
3· ˙ · · ( )( )

3.1. Self-similar Solutions

For large C (C10), if solution y0(x) for C=C0 is known,
solution y(x) for any C can be found because the solutions
are self-similar. Define theratio l º y

y0
and plug into

Equation (13):
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ρ00 and K00 are those of C0. If ρ0 and K0 are held the same, then
the mass–radius relation for large compression is

µ -
-R M 17

k
k

1
1 3 ( )

Equation (17) is useful to show the general behaviors of
solutions of different k-values in thenext section.

3.2. Discussion of Different k-values

The value of k depends on the physics governing the interior
of that object (see Table 1). When =k 1

3
, the denominator

- =k1 3 0, indicating thatthere is a critical Ccrit beyond
which no solution exists. Numerically solving Equation (13)
shows that Ccrit≈1.1 and with the appropriate ρ0 and K0 gives
the Chandrasekhar mass limit.
When < <k 11

3
, <-

-
0k

k

1

1 3
, for large C, the radius

decreases with increasing mass. This is the case for white
dwarfs, and also applicable to Uranus and Neptune (Neptune
being more massive but slightly smaller in radius).
When k=1, the numerator - =k1 0; thus, for large C,

theradius remains constantindependent of mass. This is
applicable to Jupiters, super-Jupiters, and brown dwarfs, all of

which have nearly identical radii. For large C, » py C
C1 3

3( )( )

so it can be shown that this radius » p
r

R K

G4
0

0
2

1
2( ) . With

»
r

-4bar kg mK 3 20

0
2 ( ) it gives » » ÅR R R1 10Jupiter .

When k>1, >-
-

0k

k

1

1 3
, radius increases with increasing

mass. =k 4

3
is of particular interest becauseit is the high-

pressure limit of BM2 EOS applicable to both iron-alloys and
silicates in rocky planet interiors. BM2 will be discussed
extensively in the next section.
When  +¥k , -

-
k

k

1

1 3

1

3
. This material has infinite

rigidity,meaning constant density. Therefore, µR M
1
3 is

expected to be the case.

Table 1
Physical Scenarios of Different k-values.

k +k 1 g = +k

2

1

3
=n

k

1 Physical Scenarios

1

3

4

3

1

2
3 (1) Eddington Stellar Model

(Eddington 1926) (2) extreme
relativistic degenerate e−-gas
(Eliezer et al. 2002)

2

3

5

3

2

3
1.5 (1) Uranus and Neptune (monatomic

ideal gas, applicable to
10−6∼101 Mbar, obtained by fit-
ting to EOS in Helled et al. 2011)
(2) non-relativistic degenerate
e−-gas (Salpeter & Zapolsky 1967)

1 2 5

6
1 (1) Jupiter and Saturn (fluid metallic

hydrogen, applicable to
10−3∼102 Mbar, obtained by fit-
ting to EOS in Guillot et al. 2004,
pp 35–57)

4

3

7

3
1 0.75 (1) High-pressure limit of BM2

EOS(Birch 1947)
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4. TOWARD A UNIVERSAL MASS–RADIUS RELATION

4.1. Generalized Power-law EOS

A generalized power-law EOS bears the following form:
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2
1
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and h¢ = - -k k1 2 1( ) ( ). When k1=−1, it is reduced back to
the simple power-law EOS.

This form of EOS includes the BM2 EOS(Birch 1947, 1952;
Zeng et al. 2016), which is good for approximating the
compression of ironalloys and silicates in rocky planetary
interiors, as well as the Lennard–Jones potential(Jones 1924)
approximating the interaction among neutral atoms or mole-
cules. We expect thaty1(C) of the generalized power-law EOS
can be very well approximated by the following functional
form for a certain range of C.

a
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where α and β are constants selected based on the exact form
of EOS, i.e., k1 and k2. Recall the definition of =y C1( )
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mass–radius relation for this type of EOS can be expressed as
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2

3
are

constants depending on the exact form of EOS. =ÅM
5.9724 1024· kg and ρ⊕=5.515 g cc−1 are the mass and
mean density for Earth.

4.2. Birch–Murnaghan EOS and Application to Rocky Planets

The BM2 EOS provides a decent fit to material compression
in the rocky planetary interiors of both thecore (good up to
12 TPa) and themantle (good up to 3.5 TPa; Birch 1947, 1952;

Zeng et al. 2016). These pressures approximately correspond to
the central pressure and core–mantle boundary pressure of the
interior of an ∼30M⊕ rocky planet of core mass fraction
(CMF)≈0.3, respectively.
BM2 EOS =k2

4

3( and =k1
1

3) has the following form.
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The fit of BM2 to Earth’s seismic density profile
PREM(Dziewonski & Anderson 1981) gives the
following (Zeng et al. 2016): for lower mantle,
ρ0=3.98 g cc−1, K0=206 GPa, error ∼1% in density; for
outer core, ρ0=7.05 g cc−1, K0=201 GPa, error ∼1% in
density.
The fact that K0≈200 GPa for both thelower mantle and

theouter core is convenient for modeling purpose. It suggests
that, at any pressure, the density contrast between core and
mantle remains approximately the same, including the core–
mantle boundary.
Equation (10) then becomes

⎜ ⎟⎛
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⎞
⎠= -- -C x y y y y
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y1(C) is solved numerically and then fit to an analytic function
of C (with <1% error):
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+

y C
C

C
1

1 0.5
, for 0 9. 231 0.885

( )
·
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Therefore, the general mass–radius relation for BM2 EOS is

Strictly speaking, Equation (24) only applies to one-
layer planets. However, since K0≈200 GPa for both core
and mantle, it can be used for two-layer rocky planets
with the equivalent uncompressed average density
r = + + -3.86 2 CMF CMF g cc0

3 1( · ) . It is applicable to
0.3∼30M⊕ with afractional error in radius that is
generally less than 1%.

4.3. Propagation of EOS Uncertainties onto Mass and Radius

With Equation (24), one can estimate the propagation of
EOS uncertainties (in both ρ0 and K0, which are usually
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experimentally determined) onto mass and radius. For large
mass, we could neglect the 1in the denominator to get
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Taking the natural logarithm of Equation (25) on each side and
differentiate, we get

d d dr
r

d
» - +

R
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K
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0

0

0
· · · ( )

Therefore, the perturbation effect of K0 is about one-third
that of ρ0, which is slightly less than unity. As expected, an
increase in density will make the planet smaller, while an
increase in bulk modulus will make the planet bigger.

5. THERMAL EFFECT

5.1. Adiabatic Temperature Profile

It is generally attested that throughout mostplanetary
interiors, except for the boundary layers, the temperature
gradient is near adiabatic due to convection that preserves
specific entropy. For an adiabatic Debye solid, the temperature
T and density ρ are related by

rµ gT . 27( )
Here, γ is the Grüneisen parameter for solid, not to be

confused with the adiabatic index for gas, since planets with
solid interiors are those we aremostly concerned with here. It
can be shown that the following relation holds for any Debye
solid(Slater 1939; Vočadlo & Price 1994):

g
r

= - + = - + = - + ¢
d K

d

dK

dP
K

1

6

1

2

ln

ln

1

6

1

2

1

6

1

2
.

28

· · ·

( )

In particular, for the simple power-law EOS of ~P
r ++ constk 1( ), ¢ = +K k 1, so we have the following simple
relation between γ and k:

g = +
k

2

1

3
29( )

and vice versa,

⎜ ⎟⎛
⎝

⎞
⎠g= -k 2

1

3
. 30· ( )

So if γ≈const within a certain range of pressure, then
K′≈const and k≈const within that range as wellandP must
have a power-law dependence on ρ with power-index k in that
range, and vice versa.

The thermal energy is mostly contributed by thetranslational
vibration of atoms in their crystal lattices, while electron
contribution is small because of being degenerate. Above
Debye temperature θD, usually true for planetary interiors, the
molar heat capacity of any solid is ~ R3 due to three
translational modes of vibration. TheDebye theory shows that
the specific thermal energy can be expressed as

⎜ ⎟⎛
⎝

⎞
⎠w s

m
q
m

m
r w w= = µg g- -u

RT R s

R
,

3 3
exp

3
,

31

th
D0

0( ˙ ) · · ( ˙ ) ˙

( )

where qD0 is the Debye temperature of this solid under no
compression, μ is the average atomic weight of the mineral,

and º
m q

s lnR T3

D
( ) is the specific entropy at temperature T if

the specific entropy at θD is assumed to be zero.

5.2. Melting Temperature Profile

The Tmelting (melting temperature) profile generally has a
different slope from that of the adiabat. TheLindemann
criterion(Lindemann 1910) describes the melting of solids as
lattice vibrational amplitude exceeds a certain threshold of the
lattice spacing. Combining it with the Debye theory gives

⎛
⎝⎜

⎞
⎠⎟m

º =
á ñ

= »

f
u

a

R T

v

lattice vibration amplitude

lattice spacing

0.1, 32

melting

2

melting

seismic
2

1
2

1
2·

·
( )

where á ñu2 1
2 is the root mean square displacement of an atom, a

is the lattice spacing, and q~
r

v M
seismic D

atom

1
3( )· is the bulk

seismic velocity (mean sound speed). This gives

q r r r wµ µ = µg- - -T 33k k
melting D

2 22
3

1
3( )· ˙ ( )·

k is the index of power-law EOS defined earlier. Therefore, the

slopes are

⎧
⎨⎪
⎩⎪ g

=

=

r

r

k,
d T

d

d T

d

ln

ln

ln

ln

melting

adiabat
.

When g= =k 2

3
, the two slopes are equal. Generally, >k 2

3
for solid planet interior, so k>γ (melting curve is steeper than
adiabat). As a result, melting always occurs near the top within a
uniform region inside a solid planet. This explains why Earth’s
inner core is solid while itsouter core is liquid (the inner–outer
core boundary is where the melting curve intersects the adiabat),
but not the other way around. This also explains why Earth’s
uppermost part of the entire mantle is most susceptible to partial
melting. When a magma ocean was present early on, it must be at
the surface also due to this reason. Concordantly, if the heat
content of a convective solid planet is increased somehow, the
planet will melt from the top downward. On the other hand, if the
planet cools gradually, it will freeze from thecenter outward.

6. ROTATIONAL EFFECT

The total angular momentum J of a planet can be expressed
as the product of its moment of inertia I and its rotational
angular frequency W º p2

Period
:

= WJ I . 34· ( )
The total rotational kinetic energy Erot is

= W =E I
J

I

1

2 2
. 35rot

2
2

· ·
·

( )

A small variation of Erot in consideration of J being
conserved is

⎛
⎝⎜

⎞
⎠⎟d d d= = -E

J

I

J

I
I

2 2
. 36rot

2 2

2· ·
· ( )

Assuming the planet is not spinning too fast to be
significantly distorted from a spherical shape, the momentum
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of inertia about the rotational axis can be calculated as

⎜ ⎟⎛
⎝

⎞
⎠ òp
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= + »

=
=

=

I x y dm r dm
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3
2

3
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4
. 37
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2 3

0

2 3
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· · ( )

Thus, the specific rotational energy goes like

w~ -u . 38rot
2 3 ( )

7. VIRIAL THEOREM

The Euler–Lagrange equation (Equation (3)) gives

⎜ ⎟⎛
⎝

⎞
⎠w w

¶
¶

=
¶
¶

L d

dm

L
. 39

˙
( )

Multiply both sides by ω and integrate from 0 to M:
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The rhs can be integrated by parts as
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At m=0, ω=0. At m=M, =
w

¶
¶

0L

˙
. Therefore, the term

w
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Then, we have

ò ò

ò ò
w w

w

w
w

w

¶
¶

= -
¶
¶

= -
¶
¶

= -
¶

¶

=

=

=

=

=

=

=

=

L
dm

L
d

L
dm

L
dm

ln

ln
. 42

m

m M

m

m M

m

m M

m

m M
0 0

0 0

·
˙

·

˙
· ˙ ·

˙
· ( )

Collecting terms to one side, we thus obtain the following
form of virial theorem.

⎡
⎣⎢

⎤
⎦⎥ò w w

w w
¶

¶
+

¶
¶

=
=

=
L m dm

ln ln
; , 0. 43
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( ˙ ) · ( )

This result can also be viewed from the variational principle
itself, by considering a small variation of the total action S

about the equilibrium:

⎜ ⎟⎛
⎝

⎞
⎠òd

w
dw

w
dw=

¶
¶

+
¶
¶

=
=

=
S

L L
dm 0. 44

m

m M

0 ˙
˙ ( )

If we pick a particular small variation as dw a w= · , where
α is a small number (constant), then dw a w=˙ · ˙ . It satisfies
one of the boundary conditions at m=0 automatically.
However, it seems to violate the other boundary condition of
w =

r
M 1

0
˙ ( ) at m=M with this proportional variation.

However, noticethat the pressure =
w

¶
¶

p L

˙
is zero at the

surface,sothe effect of this variation vanishes at the surface
(m = M) also. Therefore, by adopting this particular choice of
δω, the same conclusion is reached:
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From this perspective, thevirial theorem can be understood
as a special case or a direct consequence of the variational
principle (thestationary action principle) itself.
Recall the definition of w wL m; ,( ˙ ), which is the negative of

the sum of specific energies, including wu m;grav ( ) (specific
gravitational potential energy), wue ( ˙ ) (specific internal energy
due to compression, mostly contributed by electron degen-
eracy, thus the notation), wu s,th ( ˙ ) (specific thermal energy due
to temperature, that is, the vibrational motion of atoms in
crystal lattices), and urot (specific rotational kinetic energy):

= - + + +L u u u u . 46egrav th rot( ) ( )
Each term has a different power-law dependence on ω or ẇ:

All the terms that have to do with ω are long-range global
interactions, due to gravitational pull or rotation, and when
viewed from the point of general relativity, are due to the
distortion of spacetime fabrics. All the terms that have to do
with ẇ are short-range local interactions, due to the thermal
motions or quantum interactions among electrons and atoms,
and when viewed from the point of quantum physics, are due to
entropy in particular.
Equation (43) then becomes
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, gravitational potential is inversely proportional to radius

,
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is the instantaneous power index which can be variable location wise

,
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is the instantaneous power index Gruneisen parameter

, specific rotational energy.
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ugrav<0, ue>0, uth>0, urot>0, equivalently, we have

g+ + + =E k E E E
1

3

2

3
0. 48egrav th rot· · · · ( )

k and g imply the average over the integral. Equation (48)
suggests that energy could be exchanged in between all
ofthese terms during the secular evolution of a planet, while
always satisfying this identity. Furthermore,Egrav<0, Ee>0,
Eth>0, and Erot>0. It is easy to know the “+” and “−” sign
of each term. Considerthe following thought experiment: think
about a planet thatcontracts slightly, its gravitational energy
becomes more negative, while its compression, andthus
degeneracy energy,increase, and due to adiabatic compression
its thermal energy increases, and due to the conservation of
angular momentum, its rotational kinetic energy alsoincreases.

The total energy of the system = + + +E E E Eetot grav th
Erot. Furthermore,since theplanet is a bound system, we
expect Etot<0.

Usually, ~  E E E Eegrav th rot∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ for the planetary
interior.

For Earth,

1. = » *ÅE 2.5 10
GM

Rgrav,
2

3
32p

p

2

∣ ∣ J.

2. » » *ÅE 2.5 10 J
GM

Rdifferentiation,
1

15
31p

p

2

∣ ∣ ≈ ÅE1

10 grav,· ∣ ∣,
see Zeng & Jacobsen (2016c) for a detailed derivation.

3. »ÅE effective mantle heat capacity

mantle potential temperature

th,∣ ∣ ( ) ·

( )
= » »

m
-M 7.5 10 J K 1700 K 1.3 10 JR

p
3 27 1 31( )· · · ( ) ·

≈ ÅE1

2 differentiation,· ∣ ∣, see Zeng & Jacobsen (2016c) for a
detailed derivation.

4. » *ÅE 2 10 Jrot,
29∣ ∣ ≈ ÅE1

65 th,· ∣ ∣. It is now small
compared to other terms, but early on in Earth’s history,
it is much bigger and of comparable magnitude with other
terms, especially after the giant impacts.

8. CONCLUSION

In this paper, we present a new framework of formulating the
planetary interior based on the general variational (stationary
action) principle.

From this principle, a single second-order differential
equation describing the planetary interior, which is equivalent
to the two first-order differential equations (pressure balance
and mass conservation), is derived. This second-order differ-
ential equation can be non-dimensionalized for simplicity with

the introduction of a dimensionless constant º p r
C

G M

K

4

81

1
3

2
3 0

4
3

0
( ) · ·

,
which characterizes the degree of compression.

By implementing different EOSs, primarily power-law EOSs
with different power-index k, and the BM2 EOS, which is a

modified powerlaw, applicable to the terrestrial planet interior,
different solutions are categorized and discussed. An emphasis
is placed upon deriving a universal mass–radius relation for
rocky planets, and the propagation of errors of EOS onto the
mass–radius relation. A discussion of the thermal adiabatic
temperature gradient, the melting temperature gradient, the
rotational effect, and a form of viral theorem applicable to
planetary interiors, are also provided.
We hope that this paper presents a new perspective of

planetary interior, as an entity requiring stationary action in
both time and mass dimensions. This approach shall remain
valuable for the current field of exoplanet research, as agreat
number of planets are being measured, but with limited
accuracies in mass, radius, and other measurable quantities,
similar to what we have encountered for the study of stellar
interiors in the early 20th century.
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