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Abstract

This work aims to explore the scaling relations among rocky exoplanets. The assumption that the internal gravity
increases linearly in the core and stays constant in the mantle is tested against numerical simulations, and a simple
model is constructed, applicable to rocky exoplanets of CMF (core mass fraction) = 0.2–0.35 and mass = 0.1–30
M⊕. Various scaling relations are derived: (1) CMF≈CRF2 (core radius fraction squared), (2) ~P gstypical

2

(typical interior pressure scales as surface gravity squared), (3) energy released in core formation is ~ 1

10
the total

gravitational energy, (4) effective heat capacity of the mantle » ´ ´
Å( ) 7.5 10

M

M
27p J K−1, (5) moment of inertia

» M Rp p
1

3
2. These relations, though approximate, are handy for quick use owing to their simplicity and lucidity, and

provide insights into the interior structures of those exoplanets.

Key words: Earth – planets and satellites: composition – planets and satellites: fundamental parameters –
planets and satellites: interiors – planets and satellites: terrestrial planets

1. Introduction

Since the masses and radii of about a dozen rocky exoplanets
have been found and more are likely, we explore what other
parameters can also be gleaned from this information. Our
earlier work(Zeng et al. 2016) shows that by using an equation
of state (EOS) for Earth, a simple relationship between the core
mass fraction (CMF), planetary radius, and mass for different
CMFs can be found as
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This work shows that the CMF can be related to the CRF
(core radius fraction) of a rocky planet. A simple structural
model can be devised that depends only on three parameters:
(1) surface gravity gs, (2) planet radius Rp, and (3) CRF. The
procedure is as follows:

1. Surface gravity =gs
GM

R

p

p
2 can be calculated from the mass

Mp and radius Rp of a rocky planet, or directly by
combining the depth of transit with the amplitude of
radial velocity (Equation (16)).

2. CMF can be determined from Equation (1).
3. CRF can be estimated as CMF .

The sole assumption of this model is that the internal gravity
profile of the planet can be approximated as a piecewise
function (see Figure 1):

1. In the core, the gravity g increases linearly with radius
from 0 at the center to gs (surface value) at the CMB

(core–mantle boundary): = µ( )( )g r g rs
r

Rcore
core

2. In the mantle, g stays constant: = =( )g r g const.smantle

This assumption is equivalent to assuming a constant core
density, followed by the density decreasing to two-thirds of the
core density at the CMB, and the density deceasing as 1/r in
the mantle.

The validity of this assumption is tested against the
numerical results from solving the planetary structures with a
realistic EOS derived from the Preliminary Reference Earth
Model (PREM; Dziewonski & Anderson 1981), across the
mass–radius range 0.1–30 ÅM and 0.2CMF0.35 for
two-layer (core+mantle) rocky planets. Note that Mercury lies
outside this range of CMF because it has a big core, owing to
its likely origin in a giant impact (Asphaug & Reufer 2014).
Various scaling relations can be derived from this model.

2. Scaling Relation between Pressure and Gravity

The two first-order differential equations (Seager et al. 2007;
Zeng & Seager 2008; Zeng & Sasselov 2013) governing rocky
planet interiors are:

(1) hydrostatic equilibrium (force balance) equation:

r
r= - = - ( )dP

dr

Gm

r
g 2

2

(2) mass conservation equation:

p r= ( )dm

dr
r4 . 32

Equations (2) and (3) can be combined to give a relation
between the internal pressure P and the mass m (mass
contained within radius r, now used as the independent
variable instead):

p p p
= - = - = -

( ) ( )dP

dm

Gm

r G

g

m G
g

d m
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4
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4

ln
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Integrating Equation (4), we get ( ( )mln stands for natural
logarithmic of m)

ò òp
= - ( ) ( )dP

G
g d m

1

4
ln . 5

Msurface

interior mass enclosed inside
2

p

This integration is from the surface inward, because the
pressure at the surface is zero. Therefore, the typical internal
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pressure is of the order of

p
~ ( )P

g

G4
6

2

where g2 is an average of g2. The mean density of the planet is
defined as rp . The surface gravity gs and characteristic interior
pressure Ptypical are

º ( )g
GM

R
7s

p

p
2

p p
º = ( )P

g

G
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R4 4
. 8s p

p
typical

2 2

4

Later on, Ptypical is shown to approximate PCMB (the pressure
at the CMB). If gs is given in S.I. units (m s−2) and Ptypical in
GPa, then

~ ( )P g . 9stypical
2

For example, g⊕ (Earth’s gravity)»10 m s−2, »Åg 1002 GPa
is near =ÅP 136,CMB GPa.

3. Density Profile

Based on the assumption of the gravity profile, the density
profile is
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Figure 2 compares it to the PREM density profile(Dziewonski
& Anderson 1981). Notice that g is always continuous in r, but ρ
may have discontinuities. The 1/r dependence approximates the
compression of mantle material with increasing depth, and the
relatively small core (CMF0.35) allows the core density to be
approximated as constant. Anywhere in the mantle,

=
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R
. 11

p p
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In particular, at the CMB,

= = =
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CMF CRF . 12

p p

core core
2
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In reality, this exact relation becomes approximate:

» » ( )CMF CRF or CRF CMF . 132

For example, applying Equation (13) to Earth and
Kepler-93b(Ballard et al. 2014; Dressing et al. 2015) gives

1. For Earth, CMFÅ=0.325 and CRF =Å
3480 km

6371 km
=0.546.

So CRF = =Å 0.546 0.2982 2 , which is ∼9% smaller
than 0.325.

2. For Kepler-93b, numerical calculations in Zeng et al.
(2016) give CMFK93b=0.278 and CRF = 0.493K93b . So
CRFK93b

2 =0.243, which is ∼12% smaller than 0.278.

In reality, CRF2 tends to underestimate the CMF by ∼10%.
Nevertheless, it is a quick method to estimate the CMF from
the CRF and vice versa.
Earth-like rocky planets have CMF ∼0.3 and CRF ∼0.5.

Equation (13) can even be generalized to a rocky planet with a
volatile envelope when it is applied only to the solid portion of
that planet.

4. Pressure Profile

4.1. Pressure in the Mantle

Integrating Equation (5) with constant mantle gravity gives

p
=

= =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( )

P m
g

G

M

m

P
M

m
P

R

r

4
ln

ln 2 ln 14

s p

p p

mantle

2

typical typical

Figure 1. Profiles of the gravity (black) and density (red) of the approximation.

Figure 2. Black: PREM density profile. Red: approximation.
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Equation (14) gives PCMB:

p
= =⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ ( )P P

g

G
ln

1

CMF 4

1

CMF
. 15s

CMB typical

2

For CMF = 0.2–0.35, PCMB = (1.0–1.6)Ptypical.
PCMB is an important physical parameter, because it

determines the state of core and mantle materials in contact.
gs can be determined independently of the stellar parameters
(Southworth et al. 2007) as

p
=

-( )
( ) ( )

( )g
P

e A

R a i

2 1

sin
16s

RV

orb

2 1 2

2

where the semi-amplitude ARV and orbital eccentricity e can be
constrained from the radial-velocity curve, and R/a is the ratio
of radius to semimajor axis, which could be constrained
directly from the transit light curve. The orbital period Porb can
be constrained from both. Thus, it is possible to estimate PCMB

even without knowing the mass and radius accurately in some
cases for rocky planets.

4.2. Range of Applicability of This Model

From a theoretical point, we explore the range of applic-
ability of this model.

The bulk modulus is º
r

¶
¶ ( )

K P

ln
. Therefore, in the mantle

r p
=

¶
¶

= =
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( )
( )

( )K
P g

G

d m

d r
P

ln 4

ln
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2 . 17s

mantle
mantle

mantle

2

typical

Thus, in the model, the bulk modulus is constant everywhere
in the mantle and equal to twice the typical internal pressure
Ptypical. Realistically, K will increase with pressure, so how
good is this approximation?

For Earth, = =
pÅ
ÅP 115

g

G,typical 4

2

GPa, so =ÅK 230,mantle

GPa. Comparing it to the isentropic bulk modulus Ks of Earth’s
mantle according to PREM, we have K⊕,LID = 130 GPa, K⊕,670 km

255.6–300 GPa, andK⊕,D" = 640 GPa.
So ÅK ,mantle represents the middle of the range for the

realistic bulk modulus in the mantle. For higher masses, let us
invoke the BM2 (Birch–Murnaghan second-order) EOS (Birch
1947, 1952), which when fitted to PREM gives »K 2000 GPa
for both core and mantle (Zeng et al. 2016):
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Again, K is obtained by differentiating Equation (18):
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Equation (19) suggests that »K K0 when P  K0 and
 »K P P27

3
when P K0. Since Ptypical is the typical

pressure in the mantle, » »K P P2 2 typical. This is the same as
Equation (17). Therefore, this approximation will hold for
higher masses as long as the BM2 EOS holds. The BM2 EOS
fails around 30 ÅM , so the range of validity of this model
extends up to 30 ÅM .

4.3. Pressure in the Core

Since rcore=const. in this approximation, from Equation (2)
we have

p
=-

=-
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Integrating it gives the dependence of pressure on radius as a
parabolic function:
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P0 (central pressure) can be determined by connecting it to
PCMB at the CMB as

= +
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Therefore, in this approximation, the dependence of pressure
on radius is piecewise: parabolic in the core (Equation (21)),
logarithmic in the mantle (Equation (14)), and they inter-
connect at the CMB. For Earth, this approximate piecewise
pressure profile can be closely matched to the realistic pressure
profile calculated from PREM as shown in Figure 3.

5. Energy of Core Formation

The energy of core formation can be estimated as the
difference in gravitational energies between the uniform-
density state and the model. According to the virial theorem

Figure 3. Piecewise approximation to the pressure profile inside Earth
(generally applicable to two-layer rocky planets with 0.2CMF0.35).
Black curve: pressure profile from PREM. Red dashed curve: parabolic
function in radius as an approximation for pressure in the core. Light-green
dashed curve: logarithmic function in radius as an approximation for pressure
in the mantle.
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(Haswell 2010), the total gravitational energy is

ò r
= - ( )E

P
dm3 . 23grav

center

surface

With the analytic forms of P and ρ in our approximation,
Equation (23) can be integrated to give

= - -⎜ ⎟⎛
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Comparing this to the gravitational energy of a uniform-

density sphere: = -E
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3

5
p

p

2

, the difference of

the two can be taken as the energy released during core
formation (release of gravitational energy due to concentration
of denser materials toward the center):
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Since 0.2CMF0.35, the term CMF3 2 is small enough
to be dropped, which gives

» » ∣ ∣ ( )E
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R
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1

10
. 26

p

p
diff

2

grav

Therefore, the energy released during core formation is
~10% of the total gravitational energy of such an Earth-like
rocky planet. For Earth, » ´ÅE 2.5 10diff,

31 J.

6. Thermal Content of the Planet

Since the temperatures inside the mantle of such a planet are
likely above the Debye temperature of the solid, the heat
capacity per mole of atoms can be approximated as 3R (gas
constant R=8.314 J K−1 mol−1). The specific heat capacity
(heat capacity per unit mass) is mR3 where μ is the average
atomic weight of the composition, which for Mg silicates
(MgO, SiO2, or their combination in any proportion, such as
MgSiO3 or Mg2SiO4) is 0.02 kg mol−1. The specific thermal
energy uth of the mantle material is thus

m
= ( )u

RT3
27th

where T is temperature. The total thermal energy of the mantle
is calculated by integration:

ò ò= = ( )E u dm M u dx 28
M

M
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CMF

1

th
p
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where ºx m

Mp
. In this model, mantle density r µ µ

r mmantle
1 1

(Equation 10(b)). On the other hand, with the assumption of an
adiabatic temperature gradient in the mantle and the introduc-
tion of the Grüneisen parameter g º

r
¶
¶

∣( )
( )
Tln

ln adiabat, the specific

thermal energy can be rewritten to show its functional
dependence on density ρ or mass m:

m
r
r m

= =
g -g⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )u

RT RT m

M

3 3
29

p
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where Tmp (mantle potential temperature) is defined as the
temperature where the mantle adiabat is extrapolated to zero
pressure. g = 1 is taken for simplicity. Then,

m
= -( ) ( )E M

RT
2

3
1 CMF 30pth,mantle

mp

where CMF≈0.3 for the planets concerned, so
» » =CMF CRF 0.5 1

2
, and the total thermal energy of

the mantle (considering only vibrations of atoms in crystal
lattices and neglecting the electron contribution) is

m
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An effective heat capacity Cth,mantle of the mantle can be
defined with respect to Tmp:

m
» » ´ ´

Å

-
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⎠⎟ ( )C

R
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M
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3
7.5 10 J K . 32p

p
th,mantle
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Equation (31) suggests that the thermal energy can be
calculated by treating the mantle of mass Mp as uncompressed
isothermal at Tmp. For Earth, »T 1700mp K, = ´M 6 10p

24 kg,
and m = 0.02 kg mol−1 (Stacey & Davis 2008), thus

» ´ÅE 1.3 10 Jth,mantle,
31 and » ´ÅC 7.5 10th,mantle,

27 J K−1.
Detailed calculation in Stacey & Davis (2008) shows that the

effective heat capacity of Earth’s mantle is ´7.4 1027 J K−1,
which is very close to our estimate. Since the core is small in
comparison and the mantle dictates the cooling of the core
(Stacey & Davis 2008), this heat capacity can be regarded as an
approximation for the heat capacity of the entire planet, and can
generally be applied to rocky exoplanets with estimates of their
masses and mantle potential temperatures.

7. Moment of Inertia

The moment of inertia is calculated from the following
formula, where x represents the distance of the mass element
from the rotational axis:

r= ∭ ( ) ( )rI x dV 33
V

2

Consider two simple cases: (i) for a thin spherical shell with
radius Rp, =I MRpshell

2

3
2; (ii) for a uniform solid sphere with

radius Rp, =I MRpsolid sphere
2

5
2.

If ºC I MRp
2 is defined as the moment of inertia factor,

then =C 2

3
for a shell and =C 2

5
for a sphere. Smaller C

corresponds to mass being more concentrated toward the
center. For this model, the moments of inertia of the core and
mantle can each be calculated separately, then combined to
give the total moment of inertia of the planet:

= ´ ( )I M R
2

5
CMF 34p pcore

2 2

= -· ( ) ( )I M R
1

3
1 CMF 35p pmantle

2 2

4
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= + = +⎜ ⎟⎛
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5
CMF . 36p ptotal core mantle

2 2

Considering that 0.2CMF0.35, the term CMF1

5
2 can

be ignored, so »C 1

3
. In the solar system, the values of Cfor

Mercury, Venus, and Earth are indeed very close to 1

3
(Rubie

et al. 2007). Here »C 1

3
can be generalized to other Earth-like

rocky exoplanets:

» ( )I M R
1

3
. 37p pplanet

2

For Earth, = ´Å ÅM R 2.4 10 kg m2 38 2 and » =Å Å ÅI M R1

3
2

´8 10 kg m37 2. The angular momentum of Earth’s rotation
is = W = ´Å Å ÅL I 6 1033 kg m2 s−1. The total rotational

energy of Earth is = W = = ´Å Å W
Å

Å
E I 2 10

L
rot

1

2
2

2
29

2

2 J, where

W = ´Å
- -7.3 10 rad s5 1 is the angular frequency of Earth’s

rotation.

8. Conclusion

A simple model for Earth-like rocky planetary interiors is
presented here. It predicts that: (1) CMF≈CRF2 or
CRF≈ CMF (a relation exists between the core mass
fraction and the core radius fraction of a planet), (2)

~P gstypical
2 (the typical interior pressure scales as the surface

gravity squared), (3) » ∣ ∣E Ediff
1

10 grav (the energy released in
core formation is about a tenth of the total gravitational
energy), (4) the effective heat capacity of the mantle

» ´ ´
Å( )C 7.5 10

M

Mth,mantle
27p J K−1, and (5) the total

moment of inertia of a planet »I M Rp ptotal
1

3
2. More results

could be derived from this model as well.
Although they are approximate, these relations are straight-

forward to apply, because in many cases mass and radius are
measured only approximately anyway. Combined with the
mass–radius relation (Equation (1)) of Zeng et al. (2016) and
Zeng & Jacobsen (2016), these formulae give us some insight

and intuition toward understanding rocky planetary interiors,
and they complement the exact numerical approach.
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