Dense Cores: The Middle Ages

Where Do The Stars of Joy Form?

Gary Fuller

Jodrell Bab Centre for Astrophysics Uhiversity of Manchester

Stars of Joy

- Alfred H. Joy 1945, 1949 T Tauri variable stai then ~33 in Taurus) - associated with regions of obscuration
- mid-1950s - T Tauri stars recognised as young and the link betwee s ars and clouds
- Herbig 1974 dimensions of that discovery are just beginning to be appreciated.
- (1981-82 Academic year Bob Joseph fitentions TTMauri stars as interesting, young solar-like stars in a lecture to 3 year physics students at Imperial College, London.)

The Understanding of Star Formation \& Dark Cloüds in the 1970s

- "Since very little is known about the circumstances under which star formation beings, it is jecessary to start with a number of more or less arbitrary assumptions".
(R. Larson 1969, MNRAS 145, 271)
- "Heiles (1969b) made simple estimates of the conditions which ohtain in dust clourds using several questionable assumptions"
(Heiles 1971 ARAA `Physical Conditions and Chemical Constitution of Dark Clouds')
- Star formation takes place in moleccilase ouds and is slow/inefficient (Zuckerman \& Palmer 1974 ARAA) (Integrated over clouds ~2\% eirian noy -Myers et al. 1986)
- "There is much evidence that stars form in the interiors of dense, gravitationally bound molecular clouds, but little is yet known about the detailed internal structure and dynanics of such clouds, or about the processes by which stars form in them. This lack of direct informailon has ailowed theorists considerable scope for calculating idealized models"
(Larson 1981. MNRAS 194, 809)
(Whole field of HII region related work driven by radio observations on-going
- Myers (1976) F(5GHz)<0.34 Jy - No B stars forming in Heiles Cloud 2)

Dense Cores In Dark Clouds:

1983
1983
1983
1983
1984
1988
1991
1992
1993
1994
1994
1998
2000

2002

Myers
Myers Myers
Benson
Benson
Myers
Myers
Fuller
Goodman
Vilas-Boas
Ladd
Benson
Vilas-Boas
Caselli

I-CO observations and column densities of high-extinction regions
II $-\mathrm{NH}_{3}$ observations and star formation
III - Subsonic turbulence
IV - HC ${ }_{5}$ N observations
Dense cores in dark clouds Young embedded stars at 2 micron eters
V-CO outflow
VI - Shapes
VII - Line width-size relations
VIII - Velocity gradients
IX: Observations of ${ }^{13} \mathrm{CO}$ and $\mathrm{C}^{18} \mathrm{O}$ in Vela, Chamaeleon, Musca, and the Coalsack X : Ammonia emission in the Perseus molecular cloud complex
XI. A Sirvey for $\mathrm{N}_{2} \mathrm{H}^{+}, \mathrm{C}_{3} \mathrm{H}_{2}$, and CCS
XII. ${ }^{35} \mathrm{CC}$ and $\mathrm{C}^{18} \mathrm{O}$ in Lupus, Corona Australis, Vela, and Scorpius XIV. NL (1-0) Maps of Dense Cloud Cores

Important notes

- Only part of 474 ADS entries! (3 refereed 1983-2002)
- 13 papers, numbered I to XIV (?)
- Not the longest running series
- Spectroscopic binary orbits from photoelectric radial velocities - Paper 203: Observatory December 2008 R. Griffin
- 2009: Spectroscopic binaries near the North Galactic Pole Paper 12A

t
 Dense Cores In Dark Clouds

1983
1983
1983
1983
1984
1988
1991
1992
1993
1994
1994
1998
2000
2002

Themes:

I-CO observations and column densities of high-extinction regiohs
Myers
Myers
Myers
II $-\mathrm{NH}_{3}$ observations and star formation
III - Subsonic turbulence
IV - HC ${ }_{5} \mathrm{~N}$ observations
Dense cores in dark clouds Young embedded stars at 2 micron eters
V-CO outflow
VI - Shapes
VII - Line width-size relations
VIII - Velocity gradients
IX: Observations of ${ }^{13} \mathrm{CO}$ and $\mathrm{C}^{18} \mathrm{O}$ in Vela, Chamaeleon, Musca, and the Coalsack
X : Ammonia emission in the Perseus molecular cloud complex
XI. A Sirvey for $\mathrm{N}_{2} \mathrm{H}^{+}, \mathrm{C}_{3} \mathrm{H}_{2}$, and CCS

XII ${ }^{33} \mathrm{CC}$ and $\mathrm{C}^{18} \mathrm{O}$ in Lupus, Corona Australis, Vela, and Scorpius XIV. N2 (1-0) Maps of Dense Cloud Cores

III, VII, VIII

- Dense Gas

Shapes
II, IV, X, XI, XiNe VI

- ${ }^{13} \mathrm{CO} / \mathrm{C}^{18} \mathrm{O}$ 1-0 surveys of high extinction region
~300 positions in a range of nearby clouds
- Cold, $\sim 10 \mathrm{~K}$, quiescent, dv~0.8 km/s, high coll an density regions, densities up to $10^{4} \mathrm{~cm}^{3}$ mass-féw $\times 10 \mathrm{M}$
- Cloud to cloud variay ons correlated wit tuing stars

Dense Gas

NH_{3}

- Initially 149 positions surveyed, 41 cores mảpod

Size	0.1 pc
Temperature	11 K
Density	$3 \times 10^{4} \mathrm{~cm}^{-3}$
FWHM Velocity width	$0.3 \mathrm{~km} / \mathrm{s}$
Mass	4 M 。

- With 249 maps in Jijina et al. regional comparisons/limits on evolution time possible
- Other tracers: $\mathrm{N}_{2} \mathrm{H}^{+}, \mathrm{CH}_{3}, \mathrm{HCN}_{3} \mathrm{~N}_{2}, \mathrm{HC}_{5} \mathrm{~N}$

NH_{3} cores are the sites of star

 formation- NH_{3} cores very closely associated with T Tauri stars
- Number consistentuin SFR
- Critically stable
- Significant fraction of materiál in core likely to end up in a star

NH_{3} cores are close to collapse

"Just checking."

Are they making stals?
$2 \mu \mathrm{~m}$ surey - Benson \& Myens 1984

IRAS - which cores
have already formed
stars (Beichman,
Myers et al. 1986)
Starless cores
more quiescent

- Initial conditions "for low mass star formation
- Correlate core and star properties

Kinematics

- Outflows - feedback
- Variation of turbulence with size scale
- Line width - size relations
- Coherence
- Measure T fro species with different mass
- Velocity gradients across corés
- Dependence of turbule on stellar luminosity
(Fuller \& Myers 1993; Myers, Ladd, Fulle Fig91; Qaselli, Myers 1995; Barranco \& Goodman1989; Geodman Berranco, Wilner, Heyer 1998)

Decompose Line Width to TNT

$$
\sigma_{N T}^{2}=\sigma_{o b s}^{2}-\left(\frac{2 \mathrm{kT}}{m_{o b s}}\right)^{2} \quad \sigma_{T}^{2}=\left(\frac{2 \mathrm{kT}}{2.3 m_{p}^{F}}\right)^{2}
$$

Degree of thermal suppelt $=\frac{\sigma_{T}^{2}}{\sigma_{N T}^{2}}$

Line Width-Size Relations

Line widths increase with size (Larson 1981; DCDC-III)

- Low mass cores thermally dominated
- Massive cores not
- Non-thermal compores increasest more steeping in Icy ass cores

TNT model for core collapse non-isothermal collapse ,
(Myers \& Fuller 1992; Caselli \& Mye 1995)

Velocity Gradients

- 2/3 of core have gradients
- Correlation between tracers
- Typical gradient ~ 1 km/s/pc
- 'Rotation' energeticallv insignificant

DV-Luminosity

- Thermal and non-thermal components increase with increasing source L
- Argued not all NT due to winds
- Massive stars form dominated cores

Role magnetic fields ?

(Myers, Ladd, Fuller 1991)

Shapes

- Nested emission from different species
- Elongated

Prolate ?

A Filamentary Cloud

Summary

${ }^{13} \mathrm{CO} \mathrm{J}=1-0$ FCRAO Goldsmith et al.

$x=85$

Summary

"We've discovered a masuive dust and gas cloud which is either the beginning of a new star, or just an awful lot of dust and gas."

