Transition to Coherence: Finding the Edge of Coherent Cores

Jaime E. Pineda
Harvard University

Alyssa Goodman, Héctor Arce, Paola Caselli, Jonathan Foster, P.C. Myers, Erik Rosolowsky

DCDC LXV, Newport, RI Oct 21-23

Wednesday, November 18, 2009
Dense Cores

Goodman et al. (1998)
$T_A^{\star}(\text{NH}_3)$

Benson & Myers (1989)

RA (J2000)

Dec (J2000)

NH$_3$ (1,1) integrated intensity (K km s$^{-1}$)

GBT beam 0.1 pc

Wednesday, November 18, 2009
Transition to Coherence

\[\alpha_y \text{ (km s}^{-1}\text{)} \]

\[T_{\text{peak (K)}} \]

Coherent Core

Wednesday, November 18, 2009
Velocity Dispersion Gradient
Summary

• Four large area maps of NH$_3$(1,1) with the GBT
• NH$_3$(1,1) is found at positions without dust continuum emission
• “Transition to Coherence” is observed for the first time
• Transition to Coherence is very sharp: in ~0.06pc the S_v changes by a factor of 2x
• The transition to coherence could provide a robust definition of a dense core
• It might provide stronger constrains on simulations than pointed observations
$\text{NH}_3(1,1)$ and dust emission
Centroid Velocity map

RA (J2000)

Dec (J2000)

V_{lsr} (km s$^{-1}$)

Wednesday, November 18, 2009
Kinetic Temperature map

Wednesday, November 18, 2009
Non-Thermal component

\[\frac{\sigma_{NT}}{\text{km s}^{-1}} \]

\[\text{NT} = 0.5 \]

\[\sigma_{NT} = \sigma_T \]

\[\sigma_{NT} = 0.5 \sigma_T \]

\[T_{\text{peak}} \text{(K)} \]

\[\sigma_{\text{Thermal of } H_2} \text{(km s}^{-1} \)