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What can you do when you observe
most (if not all) the cooling luminosity?

Hot Core

Ambient Gas

Shocked Gas
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Mapping Shocks 
with Spitzer IRS
• 8 pure rotational transitions of 

H2: 0-0 S(0)-S(7)

• maps of a 6′ x 10′ field in the 
central region of NGC1333

• Well studied source with a 
young protocluster and 
numerous outflows.

• Transitions probe of warm (T 
> 200 K) and hot (T ~ 
1000-2000 K) gas seen in 
shocks -- and trace the 
dominant constituent. R. Gutermuth (CfA)
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H2 S(3)

Eu/k = 2504 K
5˝ Resolution
~60,000 pixels
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• Maps of 8 Rotational transitions

• Spanning Eu ~ 500 - 7000 K

• Entirety of several outflows

• H2 one of the primary outflow coolants

• ∑ Flux × 4πD2 × Ω = L(H2)
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vs H2O(R) H2O(V) H2(R) H2(V) CO(R) CO(V)

20 km/s 22.66 0.01 44.95 0.11 7.17 0.00

30 km/s 14.14 0.03 63.12 3.45 3.91 0.00

Line Cooling by Species
Fraction contributed as percentage of 1/2ρv2

Kaufman & Neufeld 1996

1
2
Ṁwv2

s = (1− fm)Ltot = (1− fm)
1
fc

LH2

1 - fm = fraction of energy flux given to cooling

fc = H2 cooling fraction

confimed by CO/O I 
ISO observations
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• Based on our luminosity we derive:  
            Mw ~ 0.6 - 2 × 10-6 M⊙ yr-1

• Can also estimate the total injected momentum flux:
            P = Mwvs = 2 - 6 × 10-6 M⊙ yr-1 km s-1 

• total momentum injected by outflow into core

➡ P = Pτdyn = 0.06 to 0.4 M⊙ km s-1 

• if similar level of outflow actively persists during the 
entire embedded phase (~5 × 105 yrs; Evans et al. 
2008):

➡ inject ~6 - 30 M⊙ km s-1 

Physics of Outflow Core Interaction

⋅⋅

⋅

⋅
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• when flows slow down to 1 km s-1 will have swept 
up 6 - 30 M⊙ 

• Typical core mass ~ 1 - 5 M⊙

• Outflow is primary destruction mechanism for the core 
(within the outflow cone)

• Also impact on the cloud -- but do not disrupt the 
cloud

Physics of Outflow Core 
Interaction
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Summary and Looking to the Future
• Presented observations of 8 rotational transitions 

of molecular hydrogen in NGC1333

• Constrained the total H2 cooling luminosity and 
provided estimates of the wind mass loss rate

• Based on outflow momentum (and energetics), the 
flow is the main destruction mechanism of the 
core

• Herschel (in some cases combined with Spitzer) will 
observe all the primary coolants - can perform this for 
many more flows but also in PDR’s, on disk surfaces....
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Context: How is this usually done

• CO Emission

➡ provides velocity, but 
need inclination 
correction

➡ mass if adopt CO/H2

➡ low velocity outflow 
emission is hidden by 
core emission

➡ emission is optically 
thick - not a good 
mass tracer

• Cooling (H2 or far-IR)

➡ need to know shock 
velocity

➡ lines are optically thin

➡ in case of H2 tracing 
the main constituent 
and coolant

➡ does not emit in core 
and is independent of 
inclination
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Image: S(0)
Contours: 35 μm
[Si+] 2P3/2-2P1/2
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 Obs
 Shock Model

Rotation 
Diagram

• zig-zag behavior -- non-equilibrium ortho/para ratio

• H2 emission well fit with shock models provided vs ~ 20-30 km/s

• covered peak of excitation.  

• we KNOW the H2 cooling luminosity
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Analysis: Rotation Diagram

• Can derive rotational temperature and ortho/para 
ratio.

• Zig-Zag Behavior: o/p ratio  not in equilibrium
• Is also some curvature in rotational diagram -- 

indicative of admixture of temperature
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Measurement of H2 Kinetic Temperature

➡ T ~ 400-800: Consistent with shock 
heating by 10-20 km/s shocks
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Ortho/Para Ratio

At T~600 K
o/p should be 
3:1 - But we 

measure
o/p ~ 0.1-2

Gas in 
front of 

shock has 
low o/p 

ratio

HH8 has
eq. ratio
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Interpretation of o/p ratios
• At observed temperature o/p should be 3

➡ The gas is currently warm

➡ The gas was previously cold (T < 50-100 K)

• Shocks heat gas temporarily (cooling time ~100 yrs)

➡ gas has not been warm long enough to establish 
equilibrium o/p ratio

➡ at T = 650 timescale is 5000 yrs! (shorter at 
higher T)

➡ Observation of o/p of 3 indicates gas heated to   
T > few thousand K previously
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H2 in NGC1333

• o/p ratios provide a fossil memory 

• lowest ratios (o/p ≤ 0.1) in front or on 
edges of shock - tracing pre-shock gas

➡ o/p ratio in cold ISM is dominated by para-
H2

➡ lowest ratios implying equilibrium below 
30 K. 
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H2 S(5)
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Fe+ 26 μm

Wednesday, November 18, 2009



S I 25 μm
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• homonuclear molecule → no permanent 
dipole moment

• quadrupole transitions with ⎮ΔJ⎮= 2

S(2)

S(1)

S(0)
J=0
J=1
J=2

J=3

J=4

H2 Rotational Transitions

H2
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H2 Rotational Transitions
• H2 nuclei each have spin I = 1/2 - can form a triplet and 

singlet nuclear function

• Fermi-Dirac statistics (total wave-function must be anti-
symmetric to interchange of any 2 particles):
➡ ortho (spins of nuclei parallel)
➡ para (spins of nuclei anti-parallel)

S(2)

S(0)
J=0

J=2
S(1)

J=1

J=3

J=4

ortho-H2 para-H2
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Equilibrium Ratio

•At high temperature (T > 
250 K) the equilibrium 
ratio is 3:1

•At low temperature 
➡ ortho-H2/para-H2 = 

nJ=1/nJ=0= 9 exp(-171/T)
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Ortho-to-Para Conversion
• Cold Gas:

➡ Formation on grains produces 
3:1

➡ slow conversion via gas-phase 
reactions (~105 yrs)

➡ expectation o/p is low in cold 
gas

• Warm Gas:
➡ o/p can change behind shocks 

via reaction with H
➡ para-H2 + H + 4000 K ↔ 

ortho-H2 + H
➡ at  650 K get 3:1 in 5000 years
➡ expectation o/p can be high 

depending on Temp and time

Flower et al. 2006
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Observations of H2 o/p Ratio

• o/p ratio known in diffuse clouds (H2 detected 
in UV) and from ISO observations of shocks - 
but never mapped with across a shock

• o/p ratio in cold, dense ISM is unclear

➡ implications for equation of state

➡ can affect gas chemistry 

➡ collision rates are stronger with ortho-H2 
and some polar species (e.g. H2O)
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Summary
• Results from two Spitzer studies of dense ISM
➡ Isolated structure within IR dark clouds
➡ Objects are pre-stellar and have a clump mass 

function significantly steeper than stellar IMF -- 
earliest stages of fragmentation

➡ Mapped the emission of H2 and atoms in 
numerous outflows

➡ Temps ~ 600 K, consistent with v ~ 10 - 20 km/s
➡ o/p ratios trace heating history of gas and are 

likely low in quiescent material
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Molecular Outflows in the ISM
• Energetic flows from young stars are an intrinsic 

part of the star formation process

• They interact with the natal cloud producing 
shocks which alter the physics and chemistry of the 
surrounding material

➡ can elevate gas temperatures from 10-30 K to > 
1000 K

➡ fast shocks (> 40 km/s) can dissociate molecules

➡ weaker shocks (10-40 km/s) can alter cloud 
chemistry
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