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A Fundamental Relation
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ABSTRACT

Recent measurements of the magnetic field strength, velocity dispersion, and size of 14 molecular clouds
agree, within uncertainty of a factor of ~2, with the predictions of a simple model in which the magnetic,
kinetic, and gravitational energies are all equal. The clouds range from extended dark clouds to massive dense
cores associated with OH masers and compact H 11 regions. Their field strengths range over a factor of ~ 103,
from ~10 4G to ~10 mG. This result suggests that the magnetic contribution to the internal motions and
energy of many molecular clouds is crucial for cloud dynamics, cloud evolution, and star formation.

(2), (8), and (10), for the 14 clouds in Table 1. The field strength
generally increases as n'/?, in accord with the trends noted by
Crutcher, Kazes, and Troland (1987) and Heiles (1987b). This
trend is easily understood, since M =~ K implies
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according to MG equations (2) and (6), assuming negligible
thermal motions. In Figure 2, n'/? varies by a factor ~ 10,
while Av varies by a factor of only ~ 10. Therefore, B should
appear correlated with n'/2, given the assumption that
K ~ M ~ G, which is corroborated by Figure 1, and the fact
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Another Important Relation
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NEW OH ZEEMAN MEASUREMENTS OF MAGNETIC FIELD STRENGTHS IN MOLECULAR CLOUDS
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Magnetic field strength correlates with column density. Best fit corresponds to

near-critical mass-to-flux ratio.



Don’t Correlate B with n!

log B, (1G)
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The Two Underlying Correlations
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Near-critical mass-to-flux ratio

A generalized linewidth-size relation, applied to
dense regions with N [1 N.

N «< o n"”.
If N (oc nR)= constant
= o,n"? = constant = o, x R’

from Basu (2005)



Generalized LWS relation
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1 Heyer et al. (2009)

N xo’/R
P NOC Gvn1/2
since R < N/n




How do stars get their masses?

1970’s: Mouschovias — magnetic field (tension) may set final
mass

1980’s-90’s: Shu, Adams, Lizano; Adams & Fatuzzo - Outflow
feedback may set masses

Late 1990’s: Padoan & Nordlund — turbulent compression (ram
pressure) may set masses



Infall Motions: Insight into B

Lee, Myers, & Tafalla (2001)
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Also, notably Tafalla et al. (1998), Caselli et al. (2002)




Highly subcritical cloud models

problematic
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with an initial central density n__ = 3x10° ¢cm™




Can turbulence induce small

collapse scales?

Ram pressure
generated dense
regions. Highly
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initially, decaying motions.
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Thin-sheet model

~ 0.5 pc Basu, Ciolek, Dapp, & Wurster (2009)



Highly turbulent models have
problems in core vicinity
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N,H* to C180

Normalized Core to LOS LDG motion

Observed Simulations: More problems
with hlghly turbulent models
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B and o, can still dominate large scales
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Goldsmith et al. (2008): Stellar
mass only ~1% of total mass.
Most of cloud is empty of cores.
Mass is mostly in the low density
envelope.

Heyer et al. (2008): Polarization
of starlight plus velocity data 2>
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magnetically dominated.
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Some conclusions

 Core infall regions have extended (subsonic) motion. Mass reservoir is
significant.

* Observed infall is too fast for highly subcritical models and too slow for highly
turbulent models.

* Theoretical efforts to explain typical (low) stellar masses by large magnetic or
turbulent pressure in the near-core environment have not been successful.

* The role of near-stellar processes, e.g., outflows, disk fragmentation, ??, may
be crucial to determining stellar masses.

* Termination of mass accretion onto nascent stellar cores may be the key
ingredient to setting stellar masses. One cannot ignore the TEMPORAL aspect
of this process (e.g., Myers 2009).



