How do stars get their masses?

and

A short look ahead

Phil Myers CfA

Dense Core LXV • Newport, RI • October 23, 2009

Introduction

Origin of stars is well studied...

birthplaces star-forming gas groupings

Origins of stellar mass...?

few available models

New model

cores without boundaries dispersal v. accretion sets M_{\star}

Results

low M_{\star} from core high M_{\star} from core + environment varying dispersal times set IMF only clusters make high M_{\star}

Protostar, embedded in 8000 AU envelope; disk; outflow

Hogerheijde 1998

Dense gas dispersal

L1551 outflow - Snell, Loren & Plambeck 80

YSOs of increasing age Arce & Sargent 06

Cluster outflows generate turbulence Li & Nakamura 06, Carroll et al 09

Protostars lose their cores after << 1 Myr Jørgensen et al 08

Cores without boundaries

Observations show "cores" with steep n superposed on "clumps" with shallow n (Kirk et al 06). No "boundary" as in BE model.

Single-star core-environment model $n=n_{SIS}+n_E$ starting to collapse

"Core" defined where steep meets shallow

"Isolated" cores $low n_E$ sparse "Clustered" cores high n_E crowded Different environments U, L, F

Available mass increases with t_f

Mass available for spherical infall in terms of core mass and free fall time:

 $M = M_{core} \theta (1-\theta^2)^{-3/2}$ $\theta = t_f(r)/t_E <1; M_{core} \approx M_J/4$ $M / M_{core} \text{ can exceed } 1$ Early: dM/dt = constant (~ Shu 77) Late: dM/dt ~ M^{5/3}

(~ Bondi 52)

 $T = 10 \text{ K} \text{ } n_{\rm E} = 10^4 \text{ cm}^{-3}$

Accretion model

Realistic accretion: stops gradually with time scale t_d Model: accretion stops suddenly at time t_d

Realistic accretion: pressurized, intermittent, complex geometry...

Model: $M_{\star} = \varepsilon M(t_f = t_d) = \varepsilon^{*}$ accretion efficiency"

 $M(t_f)$ cold spherical infall in time t_f

 $M_{\star} = \varepsilon M_{core} \theta (1-\theta^2)^{-3/2}$ $\theta = t_f / t_E < 1$ (uniform environment)

Distribution of infall times

Cold spherical infall stops at t_f

 $\mathbf{M}_{\star} = \varepsilon \mathbf{M}_{\text{core}} \theta (1 - \theta^2)^{-3/2} \qquad \theta = \mathbf{t}_{\text{f}} / \mathbf{t}_{\text{E}} < 1$

If θ same for all cores, $M_{\star}/M_{core} = constant$

MFs have same shape (as in ALL 07)

 $\star MF \sim CMF$

Why should θ be constant? If θ is distributed,

 $\star MF$ is broader than CMF

Simplest distribution: "waiting time" distribution (Basu & Jones 04)

 $p(\theta) \sim \exp(-\theta/\langle \theta \rangle)$

Alves, Lada & Lada 07

Clusters make more massive stars

MFs for identical cores, low and high n_E

low n _E	isolated 🖈 s	Taurus
high n_E	clustered \star s	Orion

T=10 K $< t_f > = 0.04$ Myr $\epsilon = 1$

Same low-mass peak due to accretion from within core $m_m \sim \sigma^3 t_f$, independent of n_E

More massive stars

due to more accretion from beyond core for high n_E , only in clusters

Prediction: only low-mass stars should form in filaments of low n_E

Combined distributions

Combined MF matches IMF

Same T, $\langle t_f \rangle$, ϵ , n_{E0} as before. Combine with log-normal MF of "single-star" cores, vary width for best match to IMF

Best match requires single-star CMF narrower than IMF, narrower than observed CMF

Why do observed CMFs match IMF? (Swift & Williams 08, Hatchell & Fuller 08)

Initial conditions for IMF

Alternate approach:

Use IMF and waiting-time distribution to derive n(r) typical of IMF-clusters Steep inside, shallow outside– like "TNT"model (Fuller, Ladd, Caselli). This "clustered" profile resembles "isolated" profile, but is warmer and denser.

Implications

If all of this were true...

Cores	n(r) steep inside (thermal), shallow outside (magnetic, turbulent)
	form protostars, but core and protostar mass only weakly related
Protostars	mass can be less than or greater than core mass low and high mass form in the same protocluster
MFs	IMF a weighted record of the most common star formation conditions Width of single-star CMF < (width of observed CMF, width of IMF)

A short look ahead

Processes	What makes protoclusters? How does their dense gas structure evolve? How does their protostar accretion start? stop? What does their MF depend on? What are we missing?	
Where to look	high column density high protostar fraction more distant "nearest" regions	
Scales	cluster 1 pc core 0.1 pc disk 10 ⁻⁴ pc (20 AU)	
Tools	Spitzer, Herschel, SOFIA, SCUBA-2, GBT, LMT, SMA CARMA, PdBI, ALMA adaptive mesh codes 3D MHD, gravity, realistic ICs and smart, motivated people!	

The bigger picture...

Thank you!!!