How do stars get their masses?

 andA short look ahead

Phil Myers
CfA

Introduction

Origin of stars is well studied...
birthplaces
star-forming gas
groupings
Origins of stellar mass...?
few available models
New model
cores without boundaries dispersal v. accretion sets M_{\star}

Results

low M_{\star} from core high M_{\star} from core + environment varying dispersal times set IMF only clusters make high M_{\star}

Hogerheijde 1998

Dense gas dispersal

L1551 outflow - Snell, Loren \& Plambeck 80

Cluster outflows generate turbulence Li \& Nakamura 06, Carroll et al 09

Protostars lose their cores after $\ll 1 \mathrm{Myr}$ Jørgensen et al 08

Cores without boundaries

Observations show "cores" with steep n superposed on "clumps" with shallow n (Kirk et al 06). No "boundary" as in BE model.

Single-star core-environment model $\mathrm{n}=\mathrm{n}_{\text {SIS }}+\mathrm{n}_{\mathrm{E}} \quad$ starting to collapse
"Core" defined where steep meets shallow
"Isolated" cores low n_{E} sparse
"Clustered" cores high n_{E} crowded
Different environments U, L, F

Myers 09

Available mass increases with t_{f}

Mass available for spherical infall in terms of core mass and free fall time:
$\mathrm{M}=\mathrm{M}_{\text {core }} \theta\left(1-\theta^{2}\right)^{-3 / 2}$
$\theta=\mathrm{t}_{\mathrm{f}}(\mathrm{r}) / \mathrm{t}_{\mathrm{E}}<1 ; \mathrm{M}_{\text {core }} \approx \mathrm{M}_{\mathrm{J}} / 4$
M / $\mathrm{M}_{\text {core }}$ can exceed 1
Early: dM/dt = constant
(\sim Shu 77)
Late: $\mathrm{dM} / \mathrm{dt} \sim \mathrm{M}^{5 / 3}$
(\sim Bondi 52)

$$
\mathrm{T}=10 \mathrm{~K} \mathrm{n}_{\mathrm{E}}=10^{4} \mathrm{~cm}^{-3}
$$

Accretion model

Realistic accretion: stops gradually with time scale t_{d}
Model: accretion stops suddenly at time \mathbf{t}_{d}

Realistic accretion: pressurized, intermittent, complex geometry...

Model: $\mathbf{M}_{\star}=\varepsilon \mathbf{M}\left(\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{d}}\right) \quad \varepsilon=$ "accretion efficiency"
$\mathrm{M}\left(\mathrm{t}_{\mathrm{f}}\right)$ cold spherical infall in time t_{f}
$M_{\star}=\varepsilon M_{\text {core }} \theta\left(1-\theta^{2}\right)^{-3 / 2} \quad \theta=t_{\downarrow} / t_{\mathrm{E}}<1 \quad$ (uniform environment)

Distribution of infall times

Cold spherical infall stops at t_{f}

$$
M_{\star}=\varepsilon M_{\text {core }} \theta\left(1-\theta^{2}\right)^{-3 / 2} \quad \theta=t_{\mathrm{f}} / \mathrm{t}_{\mathrm{E}}<1
$$

If θ same for all cores, $\mathrm{M}_{\star} / \mathrm{M}_{\text {core }}=$ constant
MFs have same shape (as in ALL 07)

$$
\star M F \sim C M F
$$

Why should θ be constant? If θ is distributed,
$\star M F$ is broader than CMF
Simplest distribution: "waiting time" distribution (Basu \& Jones 04)

$$
\mathrm{p}(\theta) \sim \exp (-\theta /<\theta>)
$$

Alves, Lada \& Lada 07

Clusters make more massive stars

MFs for identical cores, low and high \mathbf{n}_{E}
low $\mathrm{n}_{\mathrm{E}} \quad$ isolated $\star \mathrm{s}$ Taurus
high $\mathrm{n}_{\mathrm{E}} \quad$ clustered $\star \mathrm{s}$ Orion
$\left.\mathrm{T}=10 \mathrm{~K} \quad<\mathrm{t}_{\mathrm{p}}\right\rangle=0.04 \mathrm{Myr} \quad \varepsilon=1$
Same low-mass peak
due to accretion from within core $\mathrm{m}_{\mathrm{m}} \sim \sigma^{3} \mathrm{t}_{\mathrm{f}}$, independent of n_{E}

More massive stars

due to more accretion from beyond core for high n_{E}, only in clusters

Prediction: only low-mass stars should form in filaments of low n_{E}

Combined distributions

Combined MF matches IMF

Same T, $\left\langle\mathrm{t}_{\mathrm{r}}>, \varepsilon, \mathrm{n}_{\mathrm{E} 0}\right.$ as before. Combine with log-normal MF of
"single-star" cores, vary width for best match to IMF

Best match requires single-star CMF narrower than IMF, narrower than observed CMF

Why do observed CMFs match IMF? (Swift \& Williams 08, Hatchell \& Fuller 08)

Initial conditions for IMF

Alternate approach:

Use IMF and waiting-time distribution to derive $\mathrm{n}(\mathrm{r})$ typical of IMF-clusters
Steep inside, shallow outside- like "TNT"model (Fuller, Ladd, Caselli).
This "clustered" profile resembles "isolated" profile, but is warmer and denser.

Implications

If all of this were true...

Cores $n(r)$ steep inside (thermal), shallow outside (magnetic, turbulent) form protostars, but core and protostar mass only weakly related

Protostars mass can be less than or greater than core mass low and high mass form in the same protocluster

MFs IMF a weighted record of the most common star formation conditions
Width of single-star CMF < (width of observed CMF, width of IMF)

A short look ahead

Processes	What makes protoclusters? How does their dense gas structure evolve? How does their protostar accretion start? stop? What does their MF depend on? What are we missing?
Where to look	high column density high protostar fraction more distant "nearest" regions
Scales	cluster 1 pc core $\quad 0.1$ pc disk 10^{-4} pc (20 AU)
ToolsSpitzer, Herschel, SOFIA, SCUBA-2, GBT, LMT, SMA, CARMA, PdBI, ALMA... adaptive mesh codes 3D MHD, gravity, realistic ICs	
...and smart, motivated people!	

The bigger picture...

Phil's Star Formation web

CMB

