The Implications of Binary Stars for Star-Disk Interactions Robert D. Mathieu **University of Wisconsin - Madison**

Phil as a Star!

Beichman et al. 1986

Myers et al. 1987

Feigelson et al. 1987

Walter et al. 1988

Mathieu et al. 1988

Mathieu et al. 1989

- Starry
- Disky
- Gassy

Disk Truncation

.6

1:6

1:8

Scales

UZ Tau E "The Classical T Tauri Star"

- "Eruptive T Tauri star" Herbig 1977
- $\text{H}\alpha > 50 \text{ Å}$
- Heavily veiled spectrum
- Large ultraviolet excess
- $M \approx 10^{-7} M_{\odot}/yr$
- Power-law spectral energy distribution
- Massive disk 0.06 M_o
- Outflow M ≈ 10^{-8} M_o/yr
- Microjet

 $H\alpha = 80 \text{ Å}$

UZ Tau E
"The 19.1^d Period Binary Star"

Question 1:

Given every diagnostic of circumstellar accretion (and disks?), what is the source of the accreting material?

DQ Tau

P=15.80 days

Fig. 10. DQ Tau circumbinary disk after 85.5 orbital periods in periastron. Color coding is $\log(\Sigma)$, the size of the stars reflects the actual stellar radii, the length scales are in AU.

Circumbinary Disk

by

P. Artymowicz and S.Lubow Technical Support from W. Feimer

e = 0.1 mu = 0.3 H/R = 0.1

Presence of Accretion

Question 1:

Given every indicator of circumstellar accretion (and disks?), what is the source of the accreting material?

Possible Answer:

Accretion streams carrying circumbinary disk material to circumstellar region.

Angular Momentum Regulation

Question 2:

Given severe (complete?) circumstellar disk truncation, what is the impact on angular momentum evolution?

Stellar Rotation in Binaries

a > 5 AU

Meibom, Mathieu & Stassun 2007

Different at 99.9% confidence

Angular Momentum Regulation

Question 2:

Given severe (complete?) circumstellar disk truncation, what is the impact on angular momentum evolution?

Possible Answer:

Reduced angular momentum regulation for the closest binaries ("disk locking picture")

Possible Answer:

Stars in close binaries form with higher angular momentum ("formation picture")

Star-Disk Interactions in Young Binaries

- 1. At least 15% of T Tauri stars are binaries with companions within 1 AU.
- 2. The presence of close (≈ 0.02 AU) companions does not change spectroscopic accretion diagnostics and SED disk diagnostics.
- 3. Gap-crossing streams may feed accretion.
- 4. Stars in young, short-period binaries rotate more rapidly than wide binary primaries or single stars.

Outstanding Question

Given that every indicator of circumstellar accretion survives in the face of severe (complete?) circumstellar disk truncation, what does this tell us about star-disk physics?

