Modes of **Star Formation: A Retrospective** FRED C. ADAMS DENSE CORES LXV NEWPORT, RI, OCTOBER 2009

$$\frac{\partial \Sigma}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (ru\Sigma) = 0$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} + \frac{a^2}{\Sigma} \frac{\partial}{\partial r} (\Theta \Sigma) = g + l$$

$$g + l = \frac{1}{r^2 \Sigma} \int_0^{\infty} 2\pi r' dr' K_0 (r'/r) \left[-G\Sigma(r)\Sigma(r') + \frac{B_z(r)B_z(r')}{(2\pi)^2} \right]$$

$$\left[\frac{\partial B_z}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (urB_z) \right] = \frac{1}{r\Sigma} \left[\frac{(2z_0)^{1/2}}{2\pi\gamma C} \frac{rB_z^2 B_r^+}{\sqrt{\Sigma}} \right]$$

$$B_r^+ = \frac{1}{r^2} \int_0^{\infty} K_0 (r'/r) B_z (r') r' dr'$$

$$K_0(q) = \frac{1}{2\pi} \int_0^{2\pi} d\varphi \frac{1 - q\cos\varphi}{(1 + q^2 - 2q\cos\varphi)^{3/2}}$$

Monopole Solution

Fred: Your measurements of only `half the sound speed' must be wrong: you should get 0.495 times a_s. You need to get more accurate measurements... Fred: Your measurements of only `half the sound speed' must be wrong: you should get 0.495 times a_s. You need to get more accurate measurements...

Phil: ... you and Frank never do anything 0.495-hearted or 0.495-assed...

Physical Diffusion Solutions

Mass Infall Rates with Nonzero Head Start Velocity

Most Stars Form in Clusters: [1] What is the distribution of cluster environments? [2] How does the cluster environment affect the formation of stars/planets?

Conjecture:

Cluster environments actively affect the formation of planets more than the formation of stars themselves. Cumulative Distribution: Fraction of stars that form in stellar aggregates with N < N as function of N

(Adams, Proszkow, Fatuzzo, & Myers 2006, ApJ)

Dynamical Studies

I. Evolution of clusters as astrophysical objects

II.Effects of clusters on forming solar systems

Distribution of closest approaches
 Radial position probability distribution

Simulations of Embedded Clusters

- Modified NBODY2(and 6) Codes (S. Aarseth)
- Simulate evolution from embedded stage to age 10 Myr
- Cluster evolution depends on the following:
 - cluster size
 - initial stellar and gas profiles
 - gas disruption history
 - star formation history
 - primordial mass segregation
 - initial dynamical assumptions
- 100 realizations are needed to provide robust statistics for output measures

(E. Proszkow thesis - work with Phil!)

Simulation Parameters

r

R

Cluster Membership

Radius
$$R(N) = 1pc \left(\frac{N}{300}\right)^{1/2}$$

Initial Stellar Density
Gas Distribution $Q \propto r^{-1}$

$$\rho_{gas} = \frac{\rho_0}{\xi (1+\xi)^3}, \quad \rho_0 = \frac{2M_*}{\pi R^3} \quad \xi =$$

SF Efficiency = 0.33 Embedded Epoch t = 0-5 Myr SF time span t = 0.1 Myr

Virial Ratio Q = |K/W|*N* = 100, 300, 1000 *v*irial *Q* = 0.5; cold *Q* = 0.04 Mass Segregation: largest star at center of cluster

Closest Approach Distributions

Typical star experiences one close encounter with impact parameter b_c over t = 10 Myr

Subvirial initial conditions matter - thanks Phil...

0.0010

0.0001

100

1000

b (AU)

Interaction Cross Sections

Clusters have relatively moderate effects on their constituent solar systems through dynamical interactions

X

Effects of Cluster Radiation on Forming/Young Solar Systems

- Photoevaporation of a circumstellar disk
- Radiation from the background cluster often dominates radiation from the parent star (Johnstone et al. 1998; Adams & Myers 2001)
- FUV radiation (6 eV < E < 13.6 eV) is more important in this process than EUV radiation
- FUV flux of $G_0 = 3000$ will truncate a circumstellar disk to r_d over 10 Myr, where $r_d = 36AU[M_*/M_{sun}]$

Composite Distribution of FUV Flux

Photoevaporation Model

(Adams et al. 2004)

Evaporation Time vs FUV Field

(for disks around solar mass stars)

Evaporation Time vs Stellar Mass

Evaporation vs Accretion

Radiation effects Dominate over Dynamical effects in Clusters

Group/Cluster Transition

(Adams & Myers 2001, ApJ)

Constraints on Solar Birth Cluster

CONSISTENT SCENARIO for Solar Birth Aggregate

Cluster size: N = 1000 - 7000

Reasonable a priori probability (few percent)

Allows meteoritic enrichment and scattering survival

UV radiation field evaporates disk down to 30 AU

Scattering interactions truncate Kuiper belt at 50 AU leave Sedna and remaining KBOs with large (a,e,i)

Bottom Line:

Clusters in solar neighborhood exert an intermediate level of influence on their constituent solar systems: Neither Dominant Nor Negligible. What's next:

Extend analysis to larger N Distribution of cluster sizes N

Fundamental Plane for Clusters

105 10^{4} N (star) 1000 **Density:** 100 1,10,100 **Relax time:** 10 1-1000 Myr 0.1

In spherical limit, orbits are Spirographs:

Orbits in Spherical Potential

$$\rho = \frac{\rho_0}{\xi(1+\xi)^3} \Rightarrow \Psi = \frac{\Psi_0}{1+\xi}$$

$$\varepsilon = |E|/\Psi_0 \quad and \quad q = j^2/2\Psi_0 r_s^2$$

$$\varepsilon = \frac{\xi_1 + \xi_2 + \xi_1 \xi_2}{(\xi_1 + \xi_2)(1+\xi_1 + \xi_2 + \xi_1 \xi_2)}$$

$$q = \frac{(\xi_1 \xi_2)^2}{(\xi_1 + \xi_2)(1+\xi_1 + \xi_2 + \xi_1 \xi_2)}$$

$$\begin{aligned} q_{\max} &= \frac{1}{8\varepsilon} \frac{\left(1 + \sqrt{1 + 8\varepsilon} - 4\varepsilon\right)^3}{\left(1 + \sqrt{1 + 8\varepsilon}\right)^2} \quad (angular \ momentum \ of \ the \ circular \ orbit) \\ \xi_* &= \frac{1 - 4\varepsilon + \sqrt{1 + 8\varepsilon}}{4\varepsilon} \quad (effective \ semi-major \ axis) \\ \frac{\Delta\theta}{\pi} &= \frac{1}{2} + \left[\left(1 + 8\varepsilon\right)^{-1/4} - \frac{1}{2}\right] \left[1 + \frac{\log(q/q_{\max})}{6\log 10}\right]^{3.6} \\ \lim_{q \to q_{\max}} \Delta\theta &= \pi (1 + 8\varepsilon)^{-1/4} \quad (circular \ orbits \ do \ not \ close) \end{aligned}$$

These results determine the radiation exposure of a star, averaged over its orbit, as a function of energy and angular momentum:

$$\left\langle F_{fuv} \right\rangle \approx \frac{L_{fuv}}{8r_s^2 \sqrt{q}} \frac{A\varepsilon^{3/2}}{\cos^{-1} \sqrt{\varepsilon} + \sqrt{\varepsilon} \sqrt{1 - \varepsilon}}$$
where $1 \le A(q) \le \sqrt{2}$

Triaxial Density Distributions

•Relevant density profiles include NFW and Hernquist

$$\rho_{nfw} = \frac{1}{m(1+m)^2} \qquad \rho_{Hern} = \frac{1}{m(1+m)^3}$$

Isodensity surfaces in triaxial geometry

$$m^{2} = \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}}$$

•In the inner limit both profiles scale as 1/r

$$m \ll 1 \quad \square \qquad \rho \propto \frac{1}{m}$$

Triaxial Potential

$$\Phi = \int_{0}^{\infty} du \frac{\psi(m)}{\sqrt{(u+a^{2})(u+b^{2})(u+c^{2})}} \qquad \psi(m) = \int_{\infty}^{m^{2}} \rho(m) dm^{2}$$

•In the inner limit the above integral can be simplified to

$$\Phi = -I_1 + I_2$$

where I_1 is the depth of the potential well and the effective potential is given by

$$I_{2} = 2\int_{0}^{\infty} du \frac{\sqrt{\xi^{2}u^{2} + \Lambda u + \Gamma}}{(u + a^{2})(u + b^{2})(u + c^{2})}$$

 ξ, Λ, Γ are polynomial functions of x, y, z, a, b, c

$$\begin{aligned} &F_{x} = \frac{-2 \operatorname{sgn}(x)}{\sqrt{\left(a^{2} - b^{2}\right)\left(a^{2} - c^{2}\right)}} \ln \left(\frac{2G(a)\sqrt{\Gamma} + 2\Gamma - a^{2}\Lambda}{2a^{2}\xi G(a) + \Lambda a^{2} - 2a^{4}\xi^{2}}\right) \\ &F_{y} = \frac{-2 \operatorname{sgn}(y)}{\sqrt{\left(a^{2} - b^{2}\right)\left(b^{2} - c^{2}\right)}} \left[\sin^{-1} \left(\frac{\Lambda - 2b^{2}\xi^{2}}{\sqrt{\Lambda^{2} - 4\Gamma\xi^{2}}}\right) - \sin^{-1} \left(\frac{2\Gamma/b^{2} - \Lambda}{\sqrt{\Lambda^{2} - 4\xi^{2}\Gamma}}\right) \right] \\ &F_{z} = \frac{-2 \operatorname{sgn}(z)}{\sqrt{\left(a^{2} - c^{2}\right)\left(b^{2} - c^{2}\right)}} \ln \left(\frac{2G(c)\sqrt{\Gamma} + 2\Gamma - c^{2}\Lambda}{2c^{2}\xi G(c) + \Lambda c^{2} - 2c^{4}\xi^{2}}\right) \end{aligned}$$

(Adams, Bloch, Butler, Druce, Ketchum 2007)

$$G(u) = \xi^{2}u^{4} - \Lambda u^{2} + \Gamma$$

$$\xi^{2} = x^{2} + y^{2} + z^{2}$$

$$\Lambda = (b^{2} + c^{2})x^{2} + (a^{2} + c^{2})y^{2} + (a^{2} + b^{2})z^{2}$$

$$\Gamma = b^{2}c^{2}x^{2} + a^{2}c^{2}y^{2} + a^{2}b^{2}z^{2}$$

New Cluster Result

Kinematic observations of the Orion Nebula Cluster show that the system must have:
Non-spherical geometry
Non-virial initial conditions
Viewing angle not along a principal axis

(with E. Proszkow, J. Tobin, and L. Hartmann, 2009)

Solution for the Fluid Fields

