The Effects of Radiative Transfer on Low-Mass Star Formation

Stella Offner NSF Fellow, ITC

Dense Cores in Dark Clouds Oct 23 2009

Collaborators: Chris McKee (UC Berkeley), Richard Klein (UC Berkeley; LLNL), & Mark Krumholz (UC Santa Cruz)

Molecular Clouds

log (∆V/ km s⁻¹)

Summary

Clouds are turbulent

(Myers 1983, Myers & Khersonsky 1995, Myers & Gammie 1999...)

• Gravitational Instability causes local collapse:

(Myers & Fuller 1993, Myers et al 1995, Myers & Zweible 2001, Myers 2005...)

$$\lambda_J = 2 \pi / k_J = (\pi c_s^2 / G \rho)^{1/2}$$

Star formation is inefficient; clouds are ~ virialized

(Myers 1982, Myers et al. 1986, Myers & Goodman 1988, Myers 2000)

On large scales clouds are ~ isothermal

(Myers & Fuller 92, Myers 2008)

Linewidth vs. Cloud Size (Myers 1983)

Stellar Feedback

Stars serve as important sources of thermal and kinetic energy....

Massive stars output ionizing radiation

• Radiation pressure becomes significant for large luminosities (Krumholz et al. 2009)

• Thermal feedback may affect the fragmentation scale (Krumholz et al. 2007)

 $\lambda_{\rm J}$ = 2 $\pi/k_{\rm J}$ = (π c_s² / G ρ)^{1/2} ~T^{1/2}

• Radiation has been largely neglected in low-mass star formation (e.g. Offner et al. 2009, Bate et al. 2009)

Adaptive Mesh Refinement

Adaptive Mesh Refinement

Wednesday, November 18, 2009

Methods

Initial time

Driving Phase

Collapse Phase

Properties:

- Mach~4, k=1..2 driving, M_J = 5.0 Msun
- T=10 K, L = 0.65 pc, M = 180 Msun
- 4096³ Effective resolution

Compare cases with (RT) and without (NRT) radiative transfer

Radiation

Gas Column Density

Density Weighted Gas Temperature

No Radiation

Gas Column Density

Heating is not Barotropic

Sources of Heating

Mass Distribution

• Radiation suppresses disk fragmentation (no BDs formed in disks)

• Accretion rates are lower with radiation (SFR is 4% vs 9%)

How is accretion affected?

- Accretion makes up an important part of the total luminosity
- Large range in bolometric luminosities could be explained by variability in accretion (e.g. Evans et al. 2009)
- Low-accretion protostars could explain the "luminosity problem" (Kenyon et al. 1990)

Typical Class 0-1 accretion rate = 2×10^{-6} Msun/yr

Enoch et al. 2008

Accretion Rates

No Feedback

Luminosity

Conclusions

- The temperature distribution is not well represented by a barotropic EOS
- Heating from protostellar sources dominates over compressional and viscous heating
- Heating due to radiative feedback suppresses local disk fragmentation and smooths accretion

Thank-you!

Resolution

Gas Temperature vs. Radius

Gas and radiation are generally well coupled.

In this diffusion limit:

T~r^{-1/2}

