@article{0004-637X-838-1-27, author={L. A. Surin and I. V. Tarabukin and S. Schlemmer and A. A. Breier and T. F. Giesen and M. C. McCarthy and A. van der Avoird}, title={Rotational Spectroscopy of the NH3-H2 Molecular Complex}, journal={The Astrophysical Journal}, volume={838}, number={1}, pages={27}, url={http://stacks.iop.org/0004-637X/838/i=1/a=27}, year={2017}, abstract={We report the first high resolution spectroscopic study of the NH 3 –H 2 van der Waals molecular complex. Three different experimental techniques, a molecular beam Fourier transform microwave spectrometer, a millimeter-wave intracavity jet OROTRON spectrometer, and a submillimeter-wave jet spectrometer with multipass cell, were used to detect pure rotational transitions of NH 3 –H 2 in the wide frequency range from 39 to 230 GHz. Two nuclear spin species, ( o )-NH 3 –( o )-H 2 and ( p )-NH 3 –( o )-H 2 , have been assigned as carriers of the observed lines on the basis of accompanying rovibrational calculations performed using the ab initio intermolecular potential energy surface (PES) of Maret et al. The experimental spectra were compared with the theoretical bound state results, thus providing a critical test of the quality of the NH 3 –H 2 PES, which is a key issue for reliable computations of the collisional excitation and de-excitation of ammonia in the dense interstellar medium.} }