Turbulent Beginnings: A Predictive Theory of Star Formation in the Interstellar Medium

February 8, 2018
Phillips Auditorium

Our current view of the interstellar medium (ISM) is as a multiphase environment where magnetohydrodynamic (MHD) turbulence affects many key processes. These include star formation, cosmic ray acceleration, and the evolution of structure in the diffuse ISM. In this talk, I shall review the fundamentals of galactic turbulence and then discuss progress in the development of new techniques for comparing observational data with numerical MHD turbulence simulations. I shall highlight a number of exciting problems that our statistical, numerical and observational progress in the field of MHD turbulence has opened up to quantitative analysis. In particular, I will demonstrate how the star formation rate can be analytically calculated from our understanding of how turbulence and gravity induced density fluctuations in the ISM via a probability distribution function analysis. This analytic calculation predicts star formation rates from pc size scales (GMCs) to kpc size scales in galaxies. These studies represent just the beginnings of a bright future for research in galactic and extragalactic turbulence.

Event Status: