Characterization of VAMP03 and VAMP04 at SAO (Kimberk)

LNA gain and noise temperature
Measurements made with noise figure meter at 196 MHz. 3.6V bias applied (~70 mA). Unused inputs/outputs terminated.

Input 1 feeds channel A output directly. Input 2 feeds channel B output directly.

VAMP03 LNA2 ON. LNA1 OFF

<table>
<thead>
<tr>
<th>Cal \ Output</th>
<th>CH. A</th>
<th>CH. B</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>19.46 dB / 63.5 K</td>
<td>19.69 dB / 64.8 K</td>
</tr>
<tr>
<td>OFF</td>
<td>19.46 dB / 47.2 K</td>
<td>19.68 dB / 49.0 K</td>
</tr>
</tbody>
</table>

$\Delta_A=16.3$ K $\Delta_B=15.8$ K

LNA2 OFF. LNA1 ON.
<table>
<thead>
<tr>
<th>Cal \ Output</th>
<th>CH. A</th>
<th>CH. B</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>19.62 dB / 68.3 K</td>
<td>19.32 dB / 66.3 K</td>
</tr>
<tr>
<td>OFF</td>
<td>19.61 dB / 47.0 K</td>
<td>19.31 dB / 45.0 K</td>
</tr>
</tbody>
</table>

$$\Delta_A = 21.3 \text{ K} \quad \Delta_B = 21.3 \text{ K}$$

VAMP04
LNA2 ON, LNA1 OFF

<table>
<thead>
<tr>
<th>Cal \ Output</th>
<th>CH. A</th>
<th>CH. B</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>19.50 dB / 132.9 K</td>
<td>19.58 dB / 134.5 K</td>
</tr>
<tr>
<td>OFF</td>
<td>19.47 dB / 45.5 K</td>
<td>19.54 dB / 47.5 K</td>
</tr>
</tbody>
</table>

$$\Delta_A = 87.4 \text{ K} \quad \Delta_B = 87.0 \text{ K}$$

LNA2 OFF, LNA1 ON.

<table>
<thead>
<tr>
<th>Cal \ Output</th>
<th>CH. A</th>
<th>CH. B</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>19.35 dB / 284.5 K</td>
<td>19.44 dB / 285.5 K</td>
</tr>
<tr>
<td>OFF</td>
<td>19.31 dB / 46.5 K</td>
<td>19.41 dB / 48.3 K</td>
</tr>
</tbody>
</table>

$$\Delta_A = 238.0 \text{ K} \quad \Delta_B = 237.2 \text{ K}$$

Kim indicates uncertainty in $$\Delta$$ is on the order of $$\pm 5 \text{ K}$$

VAMP03
$$G_{LNA1} = 19.47 \pm 0.17 \text{ dB} \quad G_{LNA2} = 19.57 \pm 0.13 \text{ dB} \quad T_{LNA} = 47.1 \pm 1.6 \text{ K}$$

VAMP04
$$G_{LNA1} = 19.38 \pm 0.06 \text{ dB} \quad G_{LNA2} = 19.52 \pm 0.05 \text{ dB} \quad T_{LNA} = 47.0 \pm 1.2 \text{ K}$$

Attenuation in Q-hybrid cross-paths differ by 0.3, 0.1 dB in VAMP03, 04

RX gain and noise temperature
Terminate RX inputs and connect outputs individually to a ZFL-1000LN amplifier (~24 dB), HP8484A sensor and HP436A power meter. Current draw ~0.3 A.

VAMP03

<table>
<thead>
<tr>
<th>Cal \ Output</th>
<th>LCP</th>
<th>RCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>-29.65</td>
<td>-29.87</td>
</tr>
<tr>
<td>OFF</td>
<td>-29.95</td>
<td>-30.17</td>
</tr>
</tbody>
</table>

$$\Delta_{LCP} = 0.30 \text{ dB} \quad \Delta_{RCP} = 0.30 \text{ dB} \quad P_{LCP_{out}} = -53.8 \text{ dBm} \quad P_{RCP_{out}} = -54.0 \text{ dBm} \quad \pm \Delta G_{ZFL1000}$$

For $$T_{amb} = 293 \text{ K}$$, $$T_{cal} = 21 \text{ K}$$

VAMP04

<table>
<thead>
<tr>
<th>Cal \ Output</th>
<th>LCP</th>
<th>RCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>-29.82</td>
<td>-29.44</td>
</tr>
<tr>
<td>OFF</td>
<td>-29.52</td>
<td>-29.75</td>
</tr>
</tbody>
</table>

$$\Delta_{LCP} = 0.30 \text{ dB} \quad \Delta_{RCP} = 0.31 \text{ dB} \quad P_{LCP_{out}} = -53.7 \text{ dBm} \quad P_{RCP_{out}} = -53.6 \text{ dBm} \quad \pm \Delta G_{ZFL1000}$$

For $$T_{amb} = 293 \text{ K}$$, $$T_{cal} = 21 - 22 \text{ K}$$
P-band pass-thru losses
Test at 350 MHz.

VAMP03 Loss: -3.67 (LCP) -3.50 (RCP)
VAMP04 Loss: -3.67 (LCP) -3.50 (RCP) [too good to be true?]

Characterization of VAMP03 and VAMP04 in the AOC lab (Greenhill)

Terminate inputs. Outputs to an Agilent E4419B dual head P/M with a E4413 –70->+20 dBm power head.

Total output power

VAMP03
LCP total: -55.7±0.02 dBm RCP total: -55.9 ±0.03 dBm
3 dB points: 168.0/249.3 MHz 166.0/255.3 MHz
Δ3dB: 81.3 MHz 89.3 MHz
ρ3dB: 135.8 dBm/Hz 135.4 dBm/Hz

Preliminary Y-factor Ambient/Cold

\[T_{rx} = \frac{(T_{amb} - Y \cdot T_{cold})}{(Y-1)} \]

\[T_1=295K \quad T_2=77K \text{ more or less. Determine via test rig later.} \]
LCP 2.70±0.03 nW 0.985±0.015 nW Y=2.74 Trx=48.3K
RCP 2.58±0.03 nW 0.930±0.01 nW Y=2.77 Trx=47.0K

\[T_1=295K+\text{cal} \quad T_2=77K+\text{cal} \]
LCP 2.85±0.03 nW 1.17±0.03 nW
RCP 2.72±0.03 nW 1.10±0.03 nW

Bob Hayward advises avoidance of P/M levels above –30 dBm due to nonlinearity (power levels increasingly too large with rising input power). Desirable operating range is –50 to –30 dBm for these power heads.

Final Y-factor Ambient/Cold

Place one ZFL-500 at the output of each VAMP channel. Gain calibration not required.

VAMP03
\[T=295K \quad T="77K" \quad T=295K \text{ @ end} \]
LCP 845+-1 nW 320+-0.5 nW 846 nW √
RCP 825+-1 nW 311+-0.5 nW 825 nW √
Considerations

- T_{cold} is ~ 76 K at altitude

- $T_{\text{follow-on}}$ at input due to ambient components has not been taken into account. This adds 0.15 dB nominally (directional coupler) + a few hundredths for connector on FE of Rose box and for cable lengths. This needs to be measured in a test rig. Till then, $T_{\text{ff}} = 10 \pm 4$ K (0.15±0.05 dB).

 $T_{\text{cold}} = 86\pm4$ K $\Rightarrow T_{\text{RX}} = 41 \pm 7$ K But this is too low. Establish an upper limit.

 $T_{\text{cold}} = 76$ K $\Rightarrow T_{\text{RX}} = 58$ K

41 ±7 K < T_{\text{RX}} < 58 K

- $T_{\text{cal}} = (T_{\text{amb}} + T_{\text{RX}}) \times (Y(\text{amb+cal}) - 1)$

 VAMP03: 20.2 ± 0.4 K $< T_{\text{cal}} < 21.2$ K
 VAMP04: 22.8 ± 0.4 K $< T_{\text{cal}} < 24.7$ K
• \[T_{\text{cal}} = (T_{\text{cold}} + T_{\text{RX}}) \times (Y_{\text{cold+cal}} - 1) \]

VAMP03: 22.9 < \(T_{\text{cal}} \) < 24.1 K LCP, 25.4 RCP. This reflects measurement error on Y.

VAMP04: 22.9 < \(T_{\text{cal}} \) < 24.1 K

Adopt:

VAMP03: \(T_{\text{cal}} = 23\pm2 \) K

VAMP04: \(T_{\text{cal}} = 24\pm1 \) K

• Kimberk measurements of LNA stage with the NF meter \(\Rightarrow \) \(T_{\text{follow-on}} \) for post-amp stage.

\(T_{\text{LNA}} = 47 \) K

\(T_{\text{RX}} < 58 \) K

\(0 < T_{\text{follow-on}} < 11 \) K (liberal range)

Expect \(T_{\text{follow-on}} \) of just a few degrees at most, due to 20 dB gain of LNA.

Performance after installation VAMP03 (ant8/W4) VAMP04 (ant26/N12)

VAMP03 Spectrum analyzer sweeps at 4-m RX output

Terminate VAMP03 inputs. (100 kHz RBW on S/A.)

20 MHz ripple detected in VHF bandpass 2 dB p-p for both polarizations

Ripple peaks at \(~189, 209, 229, 249\) MHz, \(-93.0\) to \(-91.0\) dBm.

Out-of-band baseline: \(-105\) dBm

Peak: \(-87.3\) dBm

10 dB BW (LCP): \(157-169\) MHz \(\Delta=112\) MHz

6 dB BW (LCP): \(164.3-253.7\) MHz \(\Delta=88.7\) MHz

3 dB BW cannot be measured due to ripple.

\[\int P_\nu (6 \text{ dB BW}) = -64.1 \text{ dBm} \quad -143.8 \text{ dBm/Hz} \]

\[\int P_\nu (10 \text{ dB BW}) = -63.8 \text{ dBm} \quad -144.2 \text{ dBm/Hz} \]

Remove 4-m RX from signal path. Ripple disappears.

Now, VHF band peak: \(195.3\) MHz, \(-87.8\) dBm

3 dB BW (LCP): \(\Delta=72.7\) MHz @ \(-90.2\) dBm

6 dB BW (LCP): \(\Delta=93.3\) MHz @ \(-93.0\) dBm

\[\int P_\nu (6 \text{ dB BW}) = -60.3 \text{ dBm} \quad -139.3 \text{ dBm/Hz} \]

\[\int P_\nu (10 \text{ dB BW}) = -60.0 \text{ dBm} \quad -139.6 \text{ dBm/Hz} \]

VAMP03 Total Power Measurements

Use 1 MHz filter pak and 2 ZFL-500 amplifiers in series. \(G=22\) dB nominal.
Follow time-series. $\Delta_{\text{cal on/off}} = 0.24$ dB. (0.26 dBm in lab)

Observe periodic & non periodic 1 dB spikes. Kick-test shows this is due to 4-m RX both polz! Remove 4-m RX. Observe 4 dB loss (LCP) across pass-thru used for the P-band and VHF band.

VAMP04 Spectrum analyzer sweeps at 4-m RX output

VAMP04 mounted on antenna 26, pad N12 (?)

Terminate VAMP04 inputs. (100 kHz RBW on S/A.)

20 MHz ripple detected in VHF bandpass 3 dB peak-peak for both polarizations. Ripple peaks at ~168, 188, 208, 228, 248 MHz.

Remove 4-m RX from signal path.

LCP:
Out-of-band baseline: -105.0 dBm
Peak: -87.5 dBm

3 dB BW (LCP): Curvature makes characterization difficult. $\Delta = 74.0$ MHz @ -89.8 dBm
6 dB BW (LCP): 164.7-256.4 MHz $\Delta = 91.7$ MHz @ -93.0 dBm
$\int P_{\nu}(3 \text{ dB BW})$: -60.3 dBm -139.0 dBm/Hz
$\int P_{\nu}(6 \text{ dB BW})$: -59.7 dBm -139.2 dBm/Hz

3 MHz 0.5 dB p-p ripple remains despite removal of 4-m RX.

Now, VHF band peak: 195.3 MHz -87.8 dBm
3 dB BW (LCP): $\Delta = 72.7$ MHz @ -90.2 dBm
6 dB BW (LCP): $\Delta = 93.3$ MHz @ -93.0 dBm
$\int P_{\nu}(6 \text{ dB BW})$: -60.3 dBm -139.3 dBm/Hz
$\int P_{\nu}(10 \text{ dB BW})$: -60.0 dBm -139.6 dBm/Hz

VAMP04 Total Power Measurements

None. L-band measurements performed instead but no useful data obtained because insufficient absorber was placed in front of the feed.

Performance testing VAMP02 (ant6)

Tens of MHz ripple observed here too. Previsously missed.
20 MHz, 3 dB p-p. Peaks at 168, 188, 208, 228 MHz (LCP)
18 MHz, 3 dB p-p. Peaks not recorded. RCP.

Remove 4-m RX from signal path. (Set S/A to 30 kHz RBW)

Peak: -98.00 dBm @ 226.3 MHz (flat top makes measurement difficult)
3 dB BW (LCP): Δ=72.0 MHz @ -101.3 dBm (169.6-240.7 MHz)
6 dB BW (LCP): Δ=86.7 MHz @ -104.1 dBm (162.6-249.3 MHz)
\[\int P(3 \text{ dB BW}) \] = -66.7 dBm -145.3 dBm/Hz
\[\int P(6 \text{ dB BW}) \] = -66.3 dBm -145.7 dBm/Hz

Add 4-m RX to signal path
Peak: -102.2 dBm @ 226.3 MHz
6 dB BW (LCP): Δ=90.7 MHz @ -107.2 dBm (162.2-252.9 MHz)
\[\int P(6 \text{ dB BW}) \] = -69.7 dBm -149.3 dBm/Hz

BW through 4-m RX is wider due to peaks in 20/18 MHz ripple (e.g., 248 MHz)

No RCP measurement.

Relative strength of P-band and VHF

Peak: -93 dBm
3 dB BW (LCP): 302.2-340.2 MHz
6 dB BW (LCP): 300.7-341.3 MHz
\[\int P(6 \text{ dB BW}) \] = -62.4 dBm -138.4 dBm/Hz

No RCP measurement

Residual bandpass ripple after removal of 4-m RX

3 MHz ripple, 1 dB pp.
Stable in amplitude and frequency over at least 3 minutes.
Attenuated by pad at S/A input.

With 4-m RX in signal path, place 3 and 6 dB pads at input and 3 dB pad at output.
18/20 MHz ripple is suppressed. 3 MHz ripple is reduced to 1.5 and 1 dB p-p, respectively.

Climb quad leg. Test padding of cables.

Full suppression of 3 MHz ripple requires 3 dB pad between superflex and heliax or 3 dB pad at VAMP02 output.

Full suppression of 20 MHz ripple requires 3 dB pad at 4-m box output, or bypass switch.

Can we live with the 4-m RX box in the signal path? NB: Instability, 4 dB loss.
First light for VAMP03 (ant 8)

Set spectrum analyzer to RBW 10 kHz and VBW 10 kHz. Span 0.
Insert 1 MHz filter pak in the signal path. Toggle cal with the feeds attached.

<table>
<thead>
<tr>
<th>Cal</th>
<th>OFF (dBm)</th>
<th>ON (dBm)</th>
<th>Δ (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCP</td>
<td>-69.35</td>
<td>-68.61</td>
<td>0.74</td>
</tr>
<tr>
<td>RCP</td>
<td>-68.6</td>
<td>-68.35</td>
<td>0.25</td>
</tr>
</tbody>
</table>

WHAT? 100K sky?

| LCP | -69.35 | -68.61 | 0.74 |
| RCP | -68.6 | -68.35 | 0.25 |

WHAT? 300K sky?

Swap cables @ RX input

| LCP | -71.50 | -71.33 | 0.17 |
| RCP | -72.37 | -71.65 | 0.72 |

Order reversed. Feed/cable related?

Terminate inputs to establish baseline performance

| LCP | -73.71 | -73.40 | 0.31 |
| RCP | -73.90 | -73.52 | 0.38 |

Nominal.

Outstanding questions

Why are the cals unequal when mounted and attached to the dipoles?
Should the Q-hybrid preclude inequality?
A source of circular polarization? The sun?
Interaction with the tensioning cables that are parallel to one of the two dipoles?
What might drive the Q-hybrid to not perform a 3 dB split of the input signal paths?

Further testing should be done as follows:

- Night-time total power measurement of VAMP03/04 with a feed attached.
 - Imbalance in cal sq.wave indicates the problem is not astronomical
 - Tilt antenna elvation to rule out polarized RFI. Watch trace on one polz.
- Total power measurement of VAMP03/04 with ONE/THE OTHER RX input terminated.
 - Differing RX temps will enable assessment of Q-Hybrid performance.
- Insert 3 dB SMA pad at both RX inputs simultaneously. Measure Tcal traces. (S/wave)
- Match tests for feeds on antennas 8 and 26.