Non–standard GRB Afterglows

Dipankar Bhattacharyya
Raman Research Institute
Bangalore, India
A "standard" afterglow

- $\sim 10^{51}$ erg injected into a collimated flow
- Jet opening angle $\theta_0 \sim$ a few deg
 (observer near jet axis)
- Shock driven into ambient medium; $\Gamma \gg 1$
 Uniform density / Stellar Wind: r^{-2}
- Particle acceleration $\Rightarrow N(\gamma_e) \propto \gamma_e^{-p}$ $p > 2$; $p \sim 2.2$
- Magnetic Field build–up
- Synchrotron emission \Rightarrow Afterglow
- Light curve: power–law decline
 (rise while $v < v_m$ or v_a)
- Jet Deceleration \Rightarrow lateral expansion
 when $\Gamma < 1/\theta_0$, break in the light curve

ε_e: Fraction of thermal energy in power–law electrons
ε_B: Fraction of thermal energy in magnetic field

Constant in time

Wijers, Rees and Meszaros 1997
Waxman 1997
Sari, Piran and Narayan 1998
Rhoads 1999
Sari, Piran and Halpern 1999
Predictions of the standard model

\[F_v \propto v^{-\alpha} t^{-\beta} \]

Before "jet break"

\[F_m \equiv F(v_m) = \text{const.} \]
\[v_m \propto t^{-3/2} \quad v_c \propto t^{-1/2} \]
\[v_m < v < v_c : \ \alpha = 3(p-1)/4 \ ; \ \beta = (p-1)/2 \]
\[v > v_c : \ \alpha = (3p-2)/4 \ ; \ \beta = p/2 \]
\[\alpha = 3\beta/2 \]
\[\alpha = 3\beta/2 - 1/2 \]

After "jet break"

\[F_m \propto t^{-1} \]
\[v_m \propto t^{-2} \]
\[v_c = \text{const.} \]
\[v_m < v < v_c : \ \alpha = p \ ; \ \beta = (p-1)/2 \]
\[v > v_c : \ \alpha = p \ ; \ \beta = p/2 \]
\[\alpha = 2\beta + 1 \]
\[\alpha = 2\beta \]

With allowance for smooth transition between breaks,

Fits most afterglow data remarkably well
Predicted in the Standard Model, but seen rarely:

* Reverse shock \Rightarrow prompt emission \(\text{(Sari and Piran 1999)}\)

 optical: GRB 990123 \(\text{(Akerlof et al 1999)}\)
 radio : 990123, 991216, 000926, 980329

* Inverse Compton emission

 000926 \(\text{(Harrison et al 2001)}\)
 980329 \(\text{(Yost et al 2002)}\)
 \(\varepsilon_e / \varepsilon_B \geq 1 ; \ n_0 \ \text{relatively high}\)

Non–standard behaviour observed:

* Re–brightening

 970508, 000301c, 980326, 000911(?)
 > Additional, late energy source
 > Density jump in ambient medium
 > Microlensing
 > Supernova (e.g. 980425/SN1998bw; 011121/SN2001ke)

* Hard electron energy spectrum

 000301c, 010222......

* Slow post–jet–break radio decline \(\text{(Frail et al 2002)}\)
Possible cause for re–brightening:

- Second episode of energy injection (Panaitescu, Meszaros & Rees ’98, Zhang & Meszaros ’02, Zhang & Meszaros ’01)
- Continuous energy source
- Spherical+Jet fireballs
- Inhomogeneous ambient medium (Ramirez–Ruiz et al ’01, Dai & Lu ’02)

980326, 000911: Supernova ?
000301c : microlensing ?
\(\nu_{\text{opt}} > \nu_c; \quad p \approx 2; \) microlensing model
Upper panels: $p > 2$; In lower panels $p < 2$ yield better fit

$p \approx 1.5$ in GRB 010222
(Sagar et al 2001, Cowsik et al 2001,
Bhattacharya 2001, Panaitescu & Kumar 2001)

Upper cutoff in energy distribution is important in determining light curve and spectrum
Standard Afterglow Theory

\[n(\gamma_e) \, d\gamma_e \propto \gamma_e^{-p} \, d\gamma_e ; \quad p > 2 ; \quad \gamma_m < \gamma_e < \gamma_u \]

No. of electrons = \[\int_{\gamma_m}^{\gamma_u} n(\gamma_e) \, d\gamma_e \]

Energy content in electrons = \[\int_{\gamma_m}^{\gamma_u} \gamma_e n(\gamma_e) \, d\gamma_e \]

In both integrals, the lower limit dominates; \(\gamma_u \) is ignored

\[F_\nu (t) \propto \nu^{-\beta} t^{-\alpha} ; \quad \alpha (p), \beta (p) \]

Extension to \(p < 2 \):

* Energy content dominated by upper cutoff \(\gamma_u \)

* Evolution depends on \(\gamma_u(t) \):
 both \(\gamma_m \) and \(\gamma_u \) important

* Cooling break \(\gamma_c << \gamma_u \) \Rightarrow electrons are always "Fast Cooling",
 even if \(\nu_c > \nu_m \)

* Pile–up at \(\gamma_c \)

DB 2001: Assume \(\gamma_u \propto \Gamma_{\text{Shock}}^q \)

\[=> \alpha = \alpha (p,q) ; \text{reduces to } p > 2 \text{ expressions for } q = 1 \]

But if \(\alpha_1, \alpha_2 \) are decay indices before and after jet break,

\[3\alpha_2/4 - \alpha_1 = \begin{cases}
 \frac{3}{4} & \nu < \nu_c \\
 \frac{1}{2} & \nu > \nu_c
\end{cases} \]

independent of \(p, q \) –if both are constant
Illustration of a "bump" in energy distribution of electrons at the synchrotron cooling energy if $p < 2$
Light curves for $p = 1.5$:
upper panel: below cooling frequency
lower panel: above cooling frequency
The break in the light curve corresponds to the "jet break"
$\alpha_1 \approx 0.7 \ ; \ \alpha_2 \approx 1.4 \quad \Rightarrow \quad \nu > \nu_c \ at \ optical \ bands$

$\beta_{opt-x} \approx 0.7 \quad \Rightarrow \quad p \approx 1.4 \ , \ q \approx 1$

Panaitescu and Kumar (2001) find similar result: $p \approx 1.5$ for GRB 010222

For several other GRBs, they find $p < 2$, but need the "injection break" corresponding to γ_u to be present within the observed frequency range. Injected electron energy spectrum steepens to $p > 2$ above γ_u
Diffusive Shock Acceleration theory predicts $p = (r + 2)/(r - 1)$, where $r = v_{\text{up}} / v_{\text{down}}$ is the "compression ratio". For strong non–relativistic shocks $r \to 4$, and $p \to 2$. In relativistic shocks, $r \to 3$ and $p \to 2.5$ (Blandford and Ostriker 1978; see following talk by J.G. Kirk for a detailed discussion of shock acceleration).

Shell SNRs exhibit p mostly above 2.0, but plerions, in which the electron energy distribution may have been established due to the encounter of the relativistic pulsar wind with nebular material in a standing shock, have values of p distinctly less than 2.0. This is at variance with the prediction of the simple Diffusive Shock Acceleration theory.
\(\alpha_{\text{radio}} \) vs \(\alpha_{\text{optical}} \) after jet break. Both are expected to be equal to \(p/2 \) in the standard model (dotted line). Determination of \(\alpha_{\text{radio}} \) and \(\alpha_{\text{optical}} \) are not simultaneous, as one has to wait for \(\nu_m \) to fall below the radio frequency.

- Non–relativistic transition?
- Mag. field stratification? \((\text{e.g. Rossi and Rees 2002}) \)
- Additional electron population?
- \(\varepsilon_e / \varepsilon_B \) time dependent?