The smallest massive black holes in nearby galaxy nuclei

Aaron Barth (UC Irvine)
Jenny Greene (Harvard)
Luis Ho (OCIW)
Carol Thornton (UC Irvine)
Bob Rutledge (McGill)
The census of massive black holes is mainly being carried out for masses of $10^{6.5} - 10^{9.5} \, M_\odot$.

What can we learn about black hole demographics below $10^6 \, M_\odot$?
Black holes below $10^6 \, M_\odot$: Open questions

- How massive are the initial seeds of SMBH?
- Can black holes form and grow in bulgeless galaxies?
- Event rates for LISA?
- Event rates for stellar tidal disruptions?
- Role of gravity-wave recoil kicks in BH evolution?
Nuclear star clusters in dwarf ellipticals

- Correlation of nuclear star cluster mass with host galaxy mass for dE galaxies follows the $M_{\text{BH}}-M_{\text{bulge}}$ relation

(Wehner & Harris 2006) (Ferrarese et al. 2006)
Are there BHs in late-type spirals and dEs?
Upper limits in Local Group galaxies from HST

M33: $M_{\text{BH}} < 1500 \, M_\odot$
(Gebhardt et al. 2001, Merritt et al. 2001)

NGC 205: $M_{\text{BH}} < 3.8 \times 10^4 \, M_\odot$
(Valluri et al. 2005)
The smallest Seyfert 1 galaxies

- **NGC 4395** (Sd, $D = 4.2$ Mpc)
 (Filippenko & Sargent 1989; Filippenko & Ho 2003; Peterson et al. 2005)
 - Host $M_V = -18.0$ mag
 - central $\sigma < 30$ km/s
 - $M_{BH} = (3.6 \pm 1.1) \times 10^5 \, M_\odot$
 - $L/L_{Edd} \sim 10^{-3}$

- **POX 52** (dE, $D = 90$ Mpc)
 (Kunth et al. 1987; Barth et al. 2004)
 - Host $M_V = -17.6$ mag
 - $\sigma = 36 \pm 5$ km/s
 - $M_{BH} \sim 3 \times 10^5 \, M_\odot$
 - $L/L_{Edd} \sim 0.5$
NGC 4395 and POX 52 are AGNs with subsolar metallicity.

(SDSS data points from Kauffmann et al. 2003)
X-ray variability

(Vaughan et al. 2005)

POX 52
Chandra light curve

Thornton, Barth, et al, in progress...
Finding more:
Search strategies for SDSS

- What are the smallest black holes that can be identified from spectra of broad-lined AGNs?

- What are the smallest host galaxies that can be identified for objects with unambiguous AGN spectra?
Strategy #1: The smallest black holes in Seyfert 1 galaxies

- Work by Greene & Ho (2004)
- Single-epoch virial method (Kaspi et al. 2000) used to derive M_{BH} for all broad-lined AGNs in Sloan DR1 out to $z = 0.3$
- 19 Seyfert 1 galaxies with $M_{BH} < 10^6 \, M_{\odot}$
SDSS Seyfert 1s on the $M-\sigma$ relation

(Barth, Greene, & Ho 2005)

Note: BH masses have been reevaluated based on the Keck spectra, and the updated AGN mass calibration from Onken et al. (2004) has been applied
SDSS Seyfert 1s on the $M-\sigma$ relation

(Barth, Greene, & Ho 2005)

Note: BH masses have been reevaluated based on the Keck spectra, and the updated AGN mass calibration from Onken et al. (2004) has been applied.

Is this the upper envelope of a wide distribution of BH masses in low-σ galaxies?
New HST ACS/WFC Images

Greene, Ho, & Barth, in progress...
Strategy #2: The smallest AGN host galaxies

Fraction of galaxies hosting "Type 2" AGNs, as a function of host galaxy stellar mass

(Compiled from the Kauffmann et al. SDSS DR4 catalog)
Strategy #2: The smallest AGN host galaxies

- From SDSS DR2 AGN catalog of Kauffmann et al. (2003), select a sample of the faintest Seyfert 2 host galaxies with unresolved velocity dispersions
 - $M_g > -19.5$ mag
- New Keck observations of 29 galaxies so far
- 13 Seyfert 2s now identified with $\sigma < 60$ km/s
Are these really AGNs?

Coronal lines detected in Keck spectra

SDSS 1440+0247
\((\sigma = 47 \pm 3 \text{ km/s})\)
The smallest Seyfert host galaxy?

- $M_g = -16.8$ mag
- Stellar mass $10^{8.1} M_\odot$ (Kauffmann et al. 2003)
- $\sigma([O III]) = 28$ km/s

XMM & Spitzer observations coming soon...
Conclusions

- AGNs do occur in host galaxies with velocity dispersions down to ~25-30 km/s, but:
 - SDSS selection finds very few black holes below \(\sim 3 \times 10^5 \text{ M}_\odot \)
 - *unambiguous* AGNs are extremely rare in galaxies with stellar mass below \(10^9 \text{ M}_\odot \)

- There is *tentative* evidence for a flattening in the M-\(\sigma \) slope below \(\sigma = 100 \text{ km/s} \)

- Next steps: Reverberation mapping to better constrain the black hole masses in the smallest AGNs