What’s So Peculiar about the Cycle 23/24 Solar Minimum?

N. R. Sheeley, Jr.

Naval Research Laboratory
Washington DC 20375-5352
What’s so peculiar about the present sunspot minimum?

Cycle 23 has ended and cycle 24 has started.

Let’s look at the sunspot numbers ...
Returning to the Deep Minima of Pre-Sputnik Sunspot Cycles

\[\log_e(\text{SS#}) \]

\[\text{SS#} \]

Time (years)
Eras of Deep and Shallow Sunspot Minima During the Past 250 Years

\(\log_e (SS\#) \)

SS#
What’s so peculiar about the present sunspot minimum?

1. Low sunspot numbers

What about the duration of the minimum? ...
MWO Ca II K images, showing intensity variations during the sunspot cycle

Jan. 15, 1958

Jun. 21, 1954

Jan. 30, 1958

Jun. 5, 1966

ACTIVE NORTH

INACTIVE SOUTH
MWO Doppler Residuals, Ulrich & Boyden (2005), Symmetrized by R. Howe

What’s so peculiar about the present sunspot minimum?

1. Low sunspot numbers
2. Delayed new-cycle activity

What about the polar fields? …
Ni I 6767Å photospheric magnetograms (SOHO/MDI) 1997-2009, …

... displayed with 26.9 days per map (equatorial rotations)
6767 Å continuum images during Feb. 7-21 of each year 1997-2005, showing long-term variations in the number of south polar faculae.
Comparing MWO polar faculae & WSO polar fields during 1976-2006

North Polar Field vs. North Polar Faculae

- Number of polar faculae vs. WSO line-of-sight field (gauss)
- $m = 11.2$
- $b = -1.75$
- $r = 0.962$

South Polar Field vs. South Polar Faculae

- Number of polar faculae vs. WSO line-of-sight field (gauss)
- $m = 10.2$
- $b = 0.99$
- $r = 0.944$
What’s so peculiar about the present sunspot minimum?

1. Low sunspot numbers
2. Delayed new-cycle activity
3. Weak polar magnetic fields

What about coronal holes and open flux? …
Slightly smaller polar holes ...

... with much less magnetic flux.
This sunspot minimum has less open flux than any cycle in the past 40 years.
\[B = B_{\text{obs}} \ (12/29/07 - 01/25/08) \]

CARRINGTON ROTATION 2065 (NSO)

\[B = B_{\text{obs}} - 6 \ \text{(Gauss)} \ \cos^7 \theta \]

CARRINGTON ROTATION 2065 (NSO)
\[B = B_{\text{obs}} \ (08/30/08-09/26/08) \]

CARRINGTON ROTATION 2074 (NSO)

\[B = B_{\text{obs}} - 6 \text{ (Gauss)} \cos^7 \theta \]

CARRINGTON ROTATION 2074 (NSO)
What’s so peculiar about the present sunspot minimum?

1. Low sunspot numbers

2. Delayed new-cycle activity

3. Weak polar magnetic fields

4. Smaller polar holes with less open flux

Perhaps meridional flow provides some clues...
MWO (CR1516-2084) (4/-4 G)

17.5 m/s
6.4 m/s
10.8 m/s

NSO (CR1645-2084) (4/-4 G)
The low-latitude battle determines the amount of unbalanced trailing-polarity flux... available in each hemisphere for reversing the polar fields.
The high-latitude battle determines the shape of the polar topknot of flux...

... \(v = \frac{\kappa \text{ grad } B}{B} \)

\(B \sim \cos^{N\theta} \) with \(N = \frac{vR}{\kappa} \)
Meridional flow regulates the polar field reversal.
Meridional Flow Speed – A link the the dynamo

1. Variations from cycle to cycle → polar field reversals.

2. A slightly faster low-latitude flow → a much weaker polar field.

3. A slightly faster high-latitude flow → a smaller polar cap.

4. A smaller cap of weaker field → a smaller polar coronal hole with less open flux.

5. A slower subsurface return flow → delayed onset of the next cycle.
What’s so peculiar about the present sunspot minimum?

1. Low sunspot numbers
2. Delayed new-cycle activity
3. Weak polar magnetic fields
4. Smaller polar holes with less open flux

… all linked to the Sun’s meridional flow?

This is not your father’s solar minimum …

It’s your grandfather’s solar minimum!
What’s so peculiar about the present sunspot minimum?

1. Low sunspot numbers
2. Delayed new-cycle activity
3. Weak polar magnetic fields
4. Smaller polar holes with less open flux

… all linked to the Sun’s meridional flow?

This is not your father’s solar minimum …
It’s your grandfather’s solar minimum!