The Width of the Streamer Belt in the Two Successive Solar Minima

(Evidence for “The conservation of the total magnetic flux in the non-streamer belt region during the two solar minima”)

Liang Zhao and Len Fisk
University of Michigan
Outline

- The distribution of the streamer belt and streamer wind relative to the Heliospheric current sheet (HCS) in the two solar minima.
- The low latitude coronal holes.
- The magnetic field outside of streamer belt.
- The total amount of magnetic flux outside of the streamer belt.
- A new magnetic transport model.

Liang Zhao and Len Fisk, University of Michigan
Streamer belt region

- Streamer belt is the large, extended loops under the heliospheric current sheet (HCS). It extends to a few solar radii.

- Since the streamer belt loops are hotter, the solar wind coming from the stalks of the streamer belt should exhibit the highest charge state ratio, i.e. $\text{O}^{7+}/\text{O}^{6+}$. Therefore, we assume streamer wind can be determined by their relatively high charge state ratio, i.e. $\text{O}^{7+}/\text{O}^{6+} > 0.145$. and those high $\text{O}^{7+}/\text{O}^{6+}$ ratio wind comes from the stalks of the streamer belt, around the current sheet.

1. Streamer wind
2. non-streamer wind (some of them are coronal-hole wind and some of them are still low speed wind)
3. ICMEs.
Contribution of the three solar wind types

ICMEs (10%)
Non-streamer Wind (63%)
Streamer Wind (27%)

Liang Zhao and Len Fisk, University of Michigan

Zhao et al. 2009
Map to the 2.5 Rs solar surface

Liang Zhao and Len Fisk, University of Michigan
Different distribution of the streamer wind in the two solar minima

Last Minimum 1995.07-1998.2

Liang Zhao and Len Fisk, University of Michigan
O^{7+}/O^{6+} distribution relative to the HCS

Liang Zhao and Len Fisk, University of Michigan
Coronal holes from the SOHO EIT195 images

• SOHO/EIT 195 image of CR 2033, in which the dark regions are coronal holes.

• We highlight every coronal-hole pixel by white, and calculate the area of those coronal hole regions, especially at low latitude.

Liang Zhao and Len Fisk, University of Michigan
Enlarged low latitude coronal hole area

Last Minimum

|latitude| < 45

Current Minimum

Coronal hole area (arbitrary unit)

0

5.0 \cdot 10^3

1.0 \cdot 10^4

1.5 \cdot 10^4

2.0 \cdot 10^4

1920 1940 1960 1980 2000 2020 2040

Carrington Rotation

380%

Liang Zhao and Len Fisk, University of Michigan
Distribution of coronal pixels during two solar minima

Liang Zhao and Len Fisk, University of Michigan
Magnetic field is lower

\[B_r^* r^2 \text{ in non-streamer belt} \]

- Current min
- Last min

Liang Zhao and Len Fisk, University of Michigan

Fisk and Zhao. 2008
Total amount of magnetic flux outside of streamer belt

<table>
<thead>
<tr>
<th></th>
<th>Streamer half-width (degree)</th>
<th>Non-streamer solid angle</th>
<th>Br*r²</th>
<th>Total Magnetic flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last minimum</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Current Minimum</td>
<td>7.5~10</td>
<td>1.43</td>
<td>0.7</td>
<td>~1</td>
</tr>
</tbody>
</table>

Liang Zhao and Len Fisk, University of Michigan
Compared with the previous solar minimum, in the current solar minimum:

--- The width of the streamer belt region relative to HCS is narrower.
--- The area outside of the streamer belt (non-streamer region) is larger.
--- The low latitude coronal hole area is larger.
--- The magnetic field in non-streamer region is lower.
--- The total magnetic flux in the non-streamer region is the same.
Thank you!
Three Categories: CME, coronal hole wind and non-coronal-hole wind,

<table>
<thead>
<tr>
<th>Condition</th>
<th>Category</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{O}^7+/\text{O}^6+ \geq 6.008 \exp(-0.00578V_{sw})$ ICMEs</td>
<td>CME</td>
<td>Yellow</td>
</tr>
<tr>
<td>$0.145 < \text{O}^7+/\text{O}^6+ < 6.008 \exp(-0.00578V_{sw})$</td>
<td>Non-coronal-hole wind</td>
<td>Orange</td>
</tr>
<tr>
<td>$\text{O}^7+/\text{O}^6+ \leq 0.145$</td>
<td>Coronal hole wind</td>
<td>Green</td>
</tr>
</tbody>
</table>
Solar Cycle 23 (V-MAP)