Laser Frequency Combs for Precision Radial Velocity Measurements in Astrophysics

David F. Phillips

A collaboration between astronomers (CfA), physicists (CfA) and electrical engineers (MIT)
~15 scientists
“Astro-Comb”

- Precision spectroscopy essential for advances in astrophysics
- Currently limited by spectrograph wavelength calibration
- Laser frequency combs can solve calibration problem
- Rapid progress in last 3 years:
 - concept => lab demo => operation at observatories
- **Coming soon**: discovery & characterization of Earth-like planets
- **10-20 years**: direct measurement of cosmological dynamics

Diddams et al., Nature 445, 627 (2007).
Murphy et al., MNRAS 380, 839 (2007).
Unique Opportunity

Origins of Life in the Universe

Over the next decade, we will:

• Discover the first Earth-like planets around other stars
• Search these planets for chemical signatures of life
• Image planets directly

Is the Earth special, or just another planet?

=> Complete Copernican revolution?

http://origins.harvard.edu/
Extrasolar Planets

> 400 exoplanets found to date
- Primarily hot Jupiters
- “Super Earths” now being found
- Soon, earth-like planets

Super Earths

- Jupiter mass planets close to their stars

Habitable zone

(D. Sasselov, Nature 451, 29 2008)
Transit Method

Kepler satellite has hundreds of exoplanet candidate systems. Need confirmation!

http://www.kepler.arc.nasa.gov/

HD 189733B
Hot Jupiter
63 light-years away
Mass = 1.13 M_J
Radius = 1.14 R_J
T=1000 K
P = 2.2 days

Spitzer space telescope at 8 µm
Radial Velocity Method

- Heavier planet causes larger Doppler shift in star light
- Gives planet mass and orbital period & radius, not size
- Doppler-shift from Earth-mass planet is VERY SMALL

Doppler shift:
\[\frac{\Delta \lambda}{\lambda} = \frac{\Delta \text{RV}}{c} \]

<table>
<thead>
<tr>
<th>(\Delta \lambda)</th>
<th>(\Delta \text{RV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-7}) Å</td>
<td>1 cm/s</td>
</tr>
<tr>
<td>(10^{-6}) Å</td>
<td>10 cm/s</td>
</tr>
<tr>
<td>(10^{-5}) Å</td>
<td>1 m/s</td>
</tr>
<tr>
<td>0.01 Å</td>
<td>1 km/s</td>
</tr>
</tbody>
</table>

Stellar velocity due to planetary pull
\[K_{\text{RV}} = 28.4 \left(\frac{P}{1 \text{ year}} \right)^{-1/3} \left(\frac{M_P \sin i}{M_J} \right) \left(\frac{M_*}{M_\odot} \right)^{-2/3} \text{ m/s} \]

Earth-mass planet around Sun-like star
Pre-comb sensitivity
"Hot Jupiter"

\[v = 1 \text{ km/s}\]
\[v = 1 \text{ GHz}\]
\[\lambda = 2 \times 10^{-3} \text{ nm}\]
\[x = 1 \text{ pixel} = 20 \mu\text{m}\]
Stellar Spectrum

100,000 absorption lines
few GHz linewidths
Spectrograph

Small frequency shifts => Use echelle spectrograph
=> broad spectral coverage & high-resolution

Slit is often a multimode fiber, allowing the spectrograph to reside in an environmentally controlled room, away from the telescope.

\[v = 1 \text{ km/s} \]
\[\nu = 1 \text{ GHz} \]
\[\lambda = 2 \times 10^{-3} \text{ nm} \]
\[x = 1 \text{ pixel} = 20 \mu\text{m} \]

http://www.eso.org/sci/facilities/lasilla/instruments/harps/index.html
Spectrograph

Small frequency shifts \Rightarrow Use echelle spectrograph \Rightarrow broad spectral coverage & high-resolution

State-of-the-art astrophysical spectroscopy is broadband, photon-starved
\Rightarrow spectrograph resolution $R = \frac{\lambda}{\Delta \lambda} \sim 100,000$
\Rightarrow minimum resolution element $\Delta \nu > 5$ GHz

$\nu = 1$ km/s
$\nu = 1$ GHz
$\lambda = 2 \times 10^{-3}$ nm
$x = 1$ pixel $= 20$ µm

http://www.eso.org/sci/facilities/lasilla/instruments/harps/index.html
Octave-Spanning Comb

Octave-spanning comb => atomic clock accuracy & stability for all comb lines

\[\tau_{\text{pulse}} < 4 \text{ fs} \]

- 10⁵ comb lines
- narrow lines (<kHz)
- coherent
- equally-spaced
- intense (10 \(\mu \text{W/line} \))

We use Ti:Sapphire laser
Cr:Forsterite lasers and fiber lasers also used.

Broadband gain, Kerr effect => octave spanning
Kerr-lens mode-locking => stabilize pulsing
Cavity sets \(T_{\text{rep}} \sim 1 \text{ GHz} \)
Double-chirped mirror pairs => compensate broadband dispersion

RF beat frequencies =>
lock \(\omega_r \) & \(\omega_{CE} \)
to atomic clock

Filter out most comb lines with a stabilized Fabry-Perot Cavity to yield line-spacing up to ~40 GHz

Astro-Comb

Octave-spanning 1-GHz laser frequency comb

Diode laser

EOM

λ/2

Fabry-Perot cavity

PZT

Astro-comb beam

Phase lock box

Synthesizer

Photo-detector

PID lock box

Synthesizer

Photo-detector
Astro-Comb

FSR = m × f_{rep}
Astro-comb tested using a 1.5 m telescope with high-resolution echelle spectrograph (TRES)
Astro-comb tested using a 1.5 m telescope with high-resolution echelle spectrograph (TRES)
Astro-comb tested using a 1.5 m telescope with high-resolution echelle spectrograph (TRES)
Astro-comb tested using a 1.5 m telescope with high-resolution echelle spectrograph (TRES)
Calibration Spectrum

TRES spectrograph on 1.5 m Tillinghast reflector at Mt. Hopkins
2 dimensional spectrum on spectrograph CCD
Red Astro-Comb

• 100 nm bandwidth.
• 32 GHz spacing.
• 10 GHz FWHM on spectrograph.
• 100 nW per line.
• 25000-40000 counts in 5 minutes through integrating sphere.
Red Astro-Comb SNR

\[\delta \nu = A \frac{\text{FWHM}}{S/N \times \sqrt{n}} \]

\(A \approx 0.7 \)

\(\text{FWHM} \approx 10 \text{ GHz} \)

\((S/N)_{300 \text{ s}} \approx 200 \)

\((S/N)_{\text{max}} \approx 300 \)

\(n \approx 6 \text{ pixels} \)

\(\Delta \nu \approx 15 \text{ MHz or } 15 \text{ m/s for one peak} \)

250 peaks/order: \(\Delta \nu \approx 1 \text{ MHz in one order} \)
Fit Model

Comb
- $\Delta \nu = 1$ GHz $S \cdot \delta I / I$
- $S = \text{side mode suppression}$
- $\Delta \nu = 3$ MHz $\cdot \delta I / I$
- Negligible at the 1 m/s level

Fiber
- 100 µm fiber
- Modeled as flat top in 2D
- Half circle in 1D
- Add skew

Optics
- Modeled as Hermite-Gaussians
- Up to 16 terms

CCD
- Model as flat
- Tails from charge diffusion don’t appear to help

One order of comb lines superimposed

Residuals of fit
- Near shot noise floor
• Calculate wavelength calibration order by order.
• Compare calibration to reference frame.
• Calculate deviation of all orders from mean drift.
Blue Astro-Comb

- 1 GHz Ti:Sapphire source laser
- BBO doubling crystal
 - 50 nm bandwidth
- Fabry-Perot Cavity:
 - Bragg Mirror Stack
 - Bandwidth limited by air dispersion to ~15 nm
- Improved flux to spectrograph
- Phase scrambling

A. Benedick, Optics Express, 18, 19175-19184 (2010).
Blue Astro-Comb

One order of comb lines superimposed

Residuals of fit

faster data rate

50 cm/s resolution

Much closer to shot noise!

420 nm with less fringing.

Fiber shaking active.
Green Astro-Comb

Octave-spanning 1-GHz laser frequency comb
Diode laser → EOM → λ/2

Synthesizer → Phase lock box → Photo-detector

Fabry-Perot cavity
PZT

Astro-comb beam
Photo-detector

Photonic Crystal Fiber (PCF)
High nonlinear coefficient
Zero-dispersion wavelength ~700 nm
Four-wave mixing
Near Gaussian mode profile

FP Cavity
Complementary-Chirped Mirror Pair
Green Astro-Comb

- 45 GHz green astro-comb
- Various Ti:Sapphire settings
- Astro-comb lines not resolved on OSA
- Lab demo. Next, test at telescope

- 240 GHz green astro-comb
- demo for low-resolution OSA
- Side suppression minimal
What’s Next?

- Observe Earth candidates found by *Kepler*
- Use Doppler-shift method to distinguish new Earths from exotics

Harvard, Smithsonian, Geneva Observatory

HARPS clone for northern hemisphere

Astro-comb calibrator \Rightarrow $\Delta RV < 10$ cm/s

William Herschel telescope, Canary Islands, 4.2 meter mirror