Software

Dylan L. Curley
Overview & Design Principles

Experience:
Major instruments already deployed
- 2 optical imagers (Minicam and Megacam)
- 2 fiber spectrographs (Hectospec and Hectochelle)
- 1 infrared imager (SWIRC)

Major instruments in development
- 1 imaging spectrograph (Binospec)
- 1 spectrograph and imager (MMIRS)

Telescopes
- Multiple Mirror Telescope (Arizona)
- Magellan Telescopes (Chile)

Design Principles:
- code re-use
- write once, use twice philosophy
- small configuration files

Predictive code implementation
Requirements

Device Requirements:
• Guide Camera Focus n/a
• Calibration Slide Mirror 10 um
• ADC Prism Rotator(s) 1.0 deg
• Neutral Density Filter 0.2 deg
• Fiber Head Safety Cover 0.1 mm
• Dual-Axis Tip/Tilt Mirror 10 Hz
• Calibration Lamps (warmup) 2 hr
• Lamps Fiber Carriage 10 um

Software and Computers:
• system redundancy
• software re-use
• look-ahead design
• scheduling/reduction interoperability

Telescope:
• offloading in Alt/Az
• TCP/IP based TCS
• accounts and security regulations
• guiding user interface
Computer Systems

Computers:

HARPS-NEF Computers
• User Computer
• Devices Computer
• Spare Computer

WHT Computers
• Observer Computer
• Telescope Operator Computer

Devices:

Motor Control and Environment
• Front End, Observing devices (ADC, NDF, sky-select, fiber cover & led)
• Front End, Guiding devices (tip, tilt, focus)
• Calibration Lamps devices (power, monitoring, select stages)
• Power, Vacuum and Cooling Systems

Imaging and Guiding
• 4k by 4k imaging CCD array
• 2k by 2k guide CCD array

Telescope:
Telescope Control System
Motor Control Logical Units

Independent Units:
 Front End, Observing
 Front End, Guiding
 Calibration Lamps

Embedded Gumstix Computers:
 • 600MHz processor
 • 30MB storage + MicroSD
 • 10/100BaseT Ethernet
 • 3 serial ports
 • $300 price tag

Practical Applications
 • abstraction of motor control
 • designation for independent subsystems
 • sole-process implementation

Purpose in our Design:
 • guide system demands with 10Hz corrections
 • small package with low heat/power
 • clear command set with simple abstraction
 • easily applied to future instrumentation
Network Layout
Data Handling

FITS Header Requirements:
 • HARPS South header
 • CfA standard header

Data Retrieval And Processing:
 Detector to Devices Computer
 • EDT readout card
 • timestamp filename

 Devices Computer to User Computer
 • copy raw file to user computer directory
 • access privileges separation

 User Computer to Observer Computer
 • X11-forwarding to WHT computers
 • reduction courtesy of Geneva Observatory
 • hard copy media to observer

Data Archiving:
 • onsite archive (1 month raw, 1 week reduced)
 • hard copy media to Geneva
 • network backup from Geneva to CfA
Software Systems

Libraries and Utilities developed at CfA:
 • comm low level communications
 • logserv quick configuration logging
 • powserv power and temperature control
 • ... and many more

Client-Server:
 msg protocol
 • native Tcl code
 • interfaces with telnet
 • built in file logging
 • ... and much more

telescope communications
 • TCP/IP server-side interface
 • protocol translation to msg interface

User Interfaces:
 • observation scheduling courtesy of Geneva Observatory
 • data reduction courtesy of Geneva Observatory
 • guiding derived from CfA guide systems
 • engineering derived from CfA engineering systems
Software Interconnect - OIC
Software Interconnect - CL
Software Interconnect - GL, IA
Software Interconnect - TVP

Overview
- Observation Request Form
- Scheduler
- Observation Instrument Control
- Calibration Lamp
- Image Reduction
- Image Archive
- Guide Loop Control
- Thermal, Vacuum, and Power

Thermal Systems Control
- Detector Coolant
- Detector Temperature Monitor and Controller
- Room Temperature Monitor
- Spectrograph Temperature Monitor and Controller
- Spectrograph Heater
- Spectrograph Temperature Sensors

Vacuum Systems Monitoring
- Vacuum Systems Server (Devices Computer)
- Pfeiffer Pressure Sensors

Power Systems Control
- Power Systems Server (Devices Computer)
- Pulizzi Power Control
- Uninterruptible Power Supplies

HARPS-NEF PDR
December 6 & 7, 2007
Summary

Software Design:
• use existing software where practical
• adapt scheduling, reduction interfaces with G.O.
• thin configuration files for each device group

Data Acquisition and Archiving:
• standard EDT readout card
• onsite backup 1 month raw, 1 week reduced
• copies on both active computers for redundancy
• media backup to Geneva, network backup to CfA

Control Systems:
• separate devices into logical control groups
• use of Gumstix to abstract motor systems
• direct control of power, temperature, vacuum
• protocol translation to the WHT TCS