High Resolution IR Spectroscopy: A Laboratory Program in Support of Planetary

Atmospheric Research

T. Hewagama (U. of Maryland), W. E. Blass (U. of Tennessee), T. Kostiuk (NASA/GSFC), J. Delgado (U. of Maryland)

ABSTRACT

We report on our molecular spectroscopy effort to determine frequencies, intensities, shapes and broadening in fundamental and low-lying hot band transitions for molecules of interest to contemporary planetary atmospheric investigations in NASA's Planetary Atmospheres Program. We identified molecular species of significance to NASA's Cassini Mission to Jupiter, Saturn and Titan: ethane, including both normal and primary hot band; ethylene; and allene. The interpretation of ethane emission from the atmospheres of Jupiter, Saturn and Titan has presented difficulties. We attribute these modeling difficulties to errors and incompleteness in the line atlas source.

High spectral resolution (0.00003 cm-1 at 12 microns) laboratory measurements, obtained with the NASA/GSFC Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) instrument, were the basis of spectroscopic results reported herein. The HIPWAC instrument (Fig. 1) and measurements are described in a companion paper (Blass et al., 2008) in this session. At these spectral resolutions, the rotation-vibration transitions measured under laboratory conditions (ambient temperature and ~1 Torr pressure) are fully resolved and identified without ambiguity. The principal objective is to provide critical laboratory truth for the interpretation of infrared spectral observations of the Cassini mission and in the re-interpretation of mid-IR emission spectra from Voyager IRIS, ISO and ground based IR data of the outer planets. We discuss the analysis methodology and interpretation of the HIPWAC laboratory measurements, and compare to results of other researchers.

SIGNIFICANCE

We identified molecular species of significance to NASA's Cassini Mission to Jupiter, Saturn and Titan: ethane (C_2H_6) , including both normal and primary hot band (*i.e.*, v_9 and $v_9 + v_4 - v_4$); ethylene (C_2H_4) ; and allene (C_3H_4) . The laboratory measurements which are the basis for the results reported herein were obtained at a spectral resolution of 0.00003 cm⁻¹ (~1MHz) at 12µm. At this spectral resolution, the rotation-vibration transitions measured under laboratory conditions (ambient temperature and ~1 Torr pressure) are fully resolved and identified without ambiguity. The principal objective is to provide critical laboratory truth for the interpretation of IR spectral observations of the Cassini mission and in the reinterpretation of mid-IR emission spectra from Voyager IRIS, ISO and ground based IR data of the outer planets.

Heterodyne Instrument for Planetary Wind and Composition (HIPWAC)

LABORATORY SPECTROSCOPY ANALYSIS FACILITY

We developed an IDL based facility for the analysis of high resolution Voigt line shaoe data from different spectroscopic instruments. The facility calibrates and removes instrument effects that could introduce a systematic errors which decrease the precision level in recovering weaker lines. The facility includes a combination of options for extracting spectroscopic parameters (e.g., derive a common value for the widths of bandpass lines; fix the Doppler width and Voigt parameter) and extracts parameters such as line strength, frequency, and width using a non-linear Levenberg-Marquardt based optimization. Analysis of HIPWAC measurements of ethane, allene, and ethylene involve spectra with $v/\Delta w>10^7$ and provide the ability to recover transition frequencies to better than a part in 10^8 . Spectral resolution is better (smaller) than 1 MHz for room temperature Doppler broadened lines with a room temperature HWHM of ~30 MHz and the spectral lines are fully resolved! This allows for very accurate recovery of molecular spectroscopic parameters such as the transition frequency and intensity. A careful examination of gas cell temperature and pressure is included in error estimates of derived spectroscopic parameters.

ETHANE RESULTS

The v_9 band region of ethane, near 12.2 μ m is among the most ubiquitous and prominent emission features in the thermal IR spectrum of the outer solar system bodies such as Jupiter, Saturn, Titan and Neptune. An illustrative case is the analysis of Jupiter and Titan atmospheric ethane (C₂H₆) v_9 band emission observed by Cassini/CIRS – which have a bearing on the atmospheric thermal structure and photochemistry constraints. While researchers are able to model the acetylene (C₂H₂) spectra to a high precision (few percent), the ethane spectra show much larger residuals (~15% level in the lines and a broad structure near the 845 cm⁻¹ portion of the band; C.Nixon, personal communication). We attribute these differences to hot band lines which are sensitive to temperature and consequently serve as probes of the line formation region. Ideally, any modeling of spectral regions with fundamental bands of complex molecules should incorporate these temperature-dependent contributions. We have used the HIPWAC measurements of C₂H₆ to improve our ethane torsional model and generate high accuracy predictions for line centers and intensities. Delgado *et al.* (this session) show the impact of using such spectroscopic parameters in the analysis of Titan ethane observations with comparable spectral resolution. The inclusion of missing spectral lines has the potential to resolve modeling difficulties of observations of ethane in outer planet atmospheres.

An example spectrum and fit are shown in Fig. 2, and a our results are summarized n Table 1. Our new atlas has been intensity corrected against the best 12 spectral lines shown in the table, and the absolute frequency and intensities retrievals are better than 1MHz (0.00003 cm-1) and 5%, respectively. Recently, Vander Auwera et al. [2] published an atlas of ethane spectroscopic parameters that have resolved some of the modeling anomalies. Our results, which are based on fully resolved spectral lines are in good agreement with Vander Auwera et al. [2] for the strong lines, but also include several measured weaker lines that are spectroscopically identified and characterized for the first time. Our ability to measure weak lines leads to better constraints on the ethane band intensity (Table 2).

ALLENE RESULTS

We have also been improving the allene atlas using the HIPWAC measurements of allene. Fig. 3 is an example allene measurement at a spectral resolution of 0.00003 cm^{-1} compared to a model we calculated using the spectroscopic parameters given by Wang *et al.* [3]. When the model was scaled to match the measured halfwidth, we find excellent agreement for the strong line. Since Wang *et al.* [3] used a lower spectral resolution in their study it is likely the lower intensity lines were not measured with sufficient precision. However, the agreement in the strong line is a good validation of our analysis tools. We are using our analysis tools to recover and characterize spectroscopic parameters for the higher density weaker lines. The contributions from allene, which overlap the ethane band, may also be a part of the puzzle in the interpretation of the spectroscopy of outer planet atmospheres.

Fig. 2: shows an example HIPWAC laboratory spectrum of C_2H_6 (black trace) near the P18 (851.50514 cm⁻¹) $^{14}C^{16}O_2$ laser transition. The blue and red curves are spectra calculated using the molecular spectroscopic parameters in the previous version of the Univ. of Tennessee and current HITRAN line atlases, respectively. The spectral measurements were made with a 30 cm long cell filled to a pressure of 0.71 Torr with ethane.

Fig. 3: shows the allene spectrum near 858,1479 cm⁻¹ measured at 0.00003 cm⁻¹ spectral resolution (black trace) and a model (red trace) calculated with molecular spectroscopic parameters from Wang *et al.* [3].

TABLE 1 Measured parameters TN/GSFC atlas (TN/G2007) Vander Auwera et al. 2007 atlas

	Assignment	Measured	TN/G2007	List2-Auwera	HITRAN	Meas	TN-6-07	Measured	HITRAN	TN-G-67	ST2-Auwer
	18,598,0,0	om*-1	cm^-1	om*-1	om*-1	M(MB)	30085	intensity	intensity	intensity	intensity
		858.1583905									
	RR(5.14,0)	858.1101064	858.11	858.11005	858.1057	-1448	+1452	5.94E-22	2.09E-21	6.01E-22	6.40E-22
	RR(5,14,2)	858.1064292	858.1065	858.13634	858.0852	-1558	-1555	3.00E-22	2.09E-21	3.00E-22	3.20E-22
P12		858.515448									
	PR(4,34,2)	898.530507	856.5333	NA NA		451	535	9.966-24		3.196-23	NA 4 507 53
	P(P(4,17,0) D(P(4,17,0)	850.4842120	854 4783	000.49414	866 4800	-937	1240	1.040-22	2005.21	1.210-22	1,290-22
	PR434.0	856.557511	856.5572	NA	0.00.4904	1261	1253	3.176-23	2.098-21	7.98E-24	NA
P14		854,8563139									
	FQ(12,19.2)	854.8650441	854.865	854.86453		262	250	6.35E-23		4.52E-23	4.845-23
	RQ(12,19,0)	854.8683818	854.8681	854.8678		362	354	102E-22		9.04E-23	9.68E-23
	R0(12,25.5)	854.8139082	854.8138	854.81356		-1271	-1275	9.40E-23		8.91E-23	9.555-23
	MJ(12,20,2)	854.8104008	854.8105	854.8701		-13/6	+1373	7.136-23		4.486-23	4.785-23
	R0112.45.71	853 1280681	8531781	853 17422		37	.55	3.44F-34		2.53F.34	226.34
	00112535	8511520544	8531607	853 15872		.481	.417	5.085.71		5105.21	5.585.71
	R9(7.8.1)	853.1212927	853.1212	853.12119	853.1172	-1790	-1792	8.02E-22	2.09E-21	8.17E-22	8.625-22
	RR(7.8.3)	853.118942	853.1189	853.11884		-1860	+1882	2.40E-22		2.04E-22	2.15E-22
		851.485499									
	PR(8,34,0)	851.4959617	851.4951	NA		194	187	4.21E-23		2.23E-23	NA
118	RPI 5, 11, 3)	851.5024852	851.5023	85150232	MILENY	389	385	1496-22	2005.21	1.09E-22	1.895-22
	PO244 22 42	251 5450030	001.0001	00100000	001.000.4	200	600	0.745.00	2000-20	4 305 33	7.545.53
	PO(1127.1) RO(1128.1)	851 4434317	851 4415	851 4413		-3471	-1470	5.216-23		5.00E-23	6.345-23
	RQ(1128.7)	851.4375604	851.4373	85143687		-1557	-1566	2.25E-23		1.47E-23	1.595-23
	PR(5,32,3)	851.5447719	851.5458	NA		1657	1687	-4.96E-25		9.53E-24	NA
	PR(5,32,1)	851.5603253	851.5592	NA		2123	2089	3.57E-23		3.81E-23	NA
		848.0579728									
	RQ(10,35,0)	848.0329389	848.0328	848.03149		-750	-755	3.92E-23		5.86E-24	6.36E-24
r44	PP(2,25,2) PP(2,25,2)	849.0074171	945.0079	040.00711	849 1916	1101	1200	5 ME 22	2005-21	5 ME M	5.575.13
	00/3 05 11	642.0116511	042.0110	849 0107	040.0010	-1410	.1994	0.365.23	2000-21	7 165.33	7,695.13
	PR(3,25,3)	848.0037379	848.0036	M8.00186	M8.0098	-1626	-1629	151E-22	2.098-21	1.43E-22	1535-22
	RP(22,27.0)	848.1154359	848.1184	NA		1723	1750	9.04E-23		6.93E-27	NA
	FQ(10,34,2)	848.1178292	848.1157	848.11495		1794	1760	8.45E-23		2.83E-23	3.07E-23
	R0(10,84.0)	848.1239191	848.1241	848.12291		1977	1982	3.61E-23		7.08E-24	7.68E-24
	20774	846.3179398	645 3455	445.34553		20	73	7.707.00		4.005.00	4.000.00
	PPE(0,7,1)	840.3130121	848.3133	846.31063		-10	-7.5	2.00.22		0.20E-22	0.000-22
P24	BO(9.20.3)	849 3349914	845 3748	846.12436	ALE 3257	202	214	2 11E-22	2.09E-21	2.08E-22	2 20F-32
	RQ(9.20.1)	846.3277785	845.3281	846.32738		295	303	1.10E-22		1.04E-22	1.10E-22
	RQ(9,21,1)	846.2718449	846.2723	846.27162		-1382	-1368	8.53E-23		9.77E-23	1.64E-22
	RQ(9,21,3)	845,2688405	845,2689	846,25851		-5472	-1471	2.51E-22		1.95E-22	2.07E-22
	RQ(9.19.3)	846.3778653	845.3779	846.37761		1797	1799	2.62E-22		2.19E-22	2.31E-22
	HQ(9,19,1)	848.380833	846.3811	846.38054		1885	1894	1296-22		1.096-22	1.168-22
	808112	842 7846426	842 7853	842 78419		-141	.110	6.946-21		7165.23	2 665-23
P24	PRI8.31.21	842 7817998	842 7806	NA		.265	.262	4.00E-34		2.37F-23	NA
	PR(7,29,1)	842.8207941	842,8184	842.82055		944	873	4.84E-23		4.00E-23	4,26E-23
	PR(9,33,3)	842.7550584	842,7559	NA		-1027	-1003	2.65E-23		1.35E-23	NA
	RQ(8.30,2)	842.864851	842.8656	842.86453		2265	2288	1.24E-22		8.41E-23	8.98E-23
	RQ(8.32,0)	842,7115719	842,7103	842,70973		-2330	-2368	3.74E-23		1.51E-23	1.62E-23
	PO7 (5.1)	841.0006684	8410045	047-00411	641964	.484	.104	1815.22	2.095-24	3 765 22	1 805.12
	BO7 15 10	840 0014478	841 9916	840-99142	649.771	-121		1298.22	a.v.(D)21	9.405-22	9.815.22
	R945.0	8419791499	843.9788	M0.97906		-645	-455	1.60E-22		1.97F-22	2.048-22
P38	R9(4,5,2)	840.9766554	843.9764	840.97662		-720	-726	8.07E-22		7.86E-22	8.14E-22
	RQ(7.14,3)	841.0311323	841.0312	841.03087		913	914	8.58E-23		9.26E-23	9.66E-23
	RQ(7.14,1)	841.0339126	841.034	841.03368		997	998	3.83E-22		3.70E-22	3.86E-22
	RQ(7, 96, 1)	840.9522602	843.9526	840.95216		-1451	-1443	3.39€-22		3.74E-22	3.91E-22
	PO(E 49.2)	841 0551689	843.9453	040/34927 N/A		1640	-1533	2.705-23		9.302-23	#77E-23 Mill
	R07133	841.0681287	841.0681	841.06794		2022	2020	470E-23		8.90F-23	9 285.21
	RQ7.13.1)	841.0708533	841.0708	841.07056		2104	2101	3.01E-22		3.56E-22	3.71E-22
		839.1958112									
	PR(3,18,1)	839.1893179	839.1896	839.18923	839.1899	-195	-186	1.64E-22	2.09E-21	1.26E-22	1.32E-22
P32	RR(0.12,2)	839.1820314	839.1821	NA		-413	-412	1.44E-22		1.75E-22	NA
	PR(2,16,2)	839.2333144	839.2304	839,23007	839.2344	1034	1038	3.25E-22	2.09E-21	3.31E-22	3.44E-22
	PRQ4,20,0)	839.1582923	839,1579	839.15839		-1125	-1137	5.37E-23		4.65E-23	4.875-23
	PR(4.10,0) PR(4.20.24	839 1480996	839.1423	839 148*3	839 1377	-1433	-423	1905-22	2.09E-24	1.865.99	1855.32
	PR(5.22.1)	839.1233561	839.1235	839.12355	www.1377	-2172	-2168	1.14E-22	2008/21	1.31E-22	1.385-22
-											

TABLE 2.

	T(K)	S(v ₉) 10 ⁻¹⁹ cm/mol	S(RQ ₀) 10 ⁻¹⁹ cm/mol
ATMOS 1995	296	6.967	0.253
GEISA 2003	296	5.743	0.229
HITRAN 2004	296	14.56	0.571
AUWERA LIST 3	296	7.548	0.261
TN/G2007 (THIS WORK)	296	6,941	0.270

REFERENCES [1] Blass W. E., Delgado J., Kostiuk T., and Hewagama T., see companion paper in this session (2008).

[2] Vander Auwera J., Moazzen-Ahmadi N. and Flaud J.-M. (2007) *ApJ*, 662, 750–757.
[3] Wang W. F., Sirota J. M., and Reuter D. C. (1999) *J. Mol. Spec.*, 194, 256-268.

The authors gratefully acknowledge the NASA Planetary Atmospheres Program for supporting this research.