The Collision-Broadened Line Shape of CO$_2$
via the Complex Robert-Bonamy Method:
The Complexity of Simplicity

Robert R. Gamache, Julien Lamouroux, Anne L. Laraia

*Joint meeting of the 11th HITRAN Database Conference and 10th ASA conference
June 16-18, 2010*
Why CO$_2$?

Venus and Mars

Venus Express with Venus IR Thermal Imaging Spectrometer

Mars Reconnaissance Orbiter Mission with the Mars Climate Sounder
Why CO$_2$?

Earth

A well mixed greenhouse gas with a very long lifetime.

Measurements

Atmospheric Infrared Sounder (AIRS)
Infrared Atmospheric Sounder Interferometer (IASI)
Greenhouse Gas Observing Satellite (GOSAT)
Orbiting Carbon Observatory (OCO-2) 1% precision
Previous calculations

Bouanich and Brodbeck, JQSRT 14, 141 (1974)
Semiclassical complex Robert-Bonamy theory

The half-width and line shift are

\[(
\gamma - i\delta\n\big)_{f\leftarrow i} = \frac{n_2}{2 \pi c} \sum_{J_2} \langle J_2 | \rho_2 | J_2 \rangle \int_0^\infty v \ f(v) \ dv \int_0^{\infty} 2\pi b \left[1 - e^{-\{S_1 + \text{Im}(S_2)\}} e^{-\text{Re}(S_2)} \right] db \]

where \(n_2\) is the number density of perturbers and the average is over all trajectories given by impact parameter \(b\) and initial relative velocity \(v\) and initial rotational state \(J_2\) of the collision partner.
Radiator - Perturber trajectory determined via the potential

The isotropic component of the atom-atom potential is used to define the trajectory of the collisions.

Trajectories: parabolic model or Hamilton’s Equations
Potential Terms

The electrostatic potential is given by an expansion of the charge distribution in terms of the electric moments of the molecules

\[V_{1,2}^{elec} = V_{\theta_1 \theta_2} \]
Atom-Atom Potential

\[V_{\text{at-at}} = \sum_{ij} 4 \varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] \]

Lennard-Jones (6-12) parameters

\(\text{CO}_2-N_2 \)

N-O \quad N-C

\(\sigma/\text{Å} \) \quad 2.55 \quad 2.77

\(\varepsilon/\text{k}_B(\text{K}) \) \quad 39.12 \quad 41.54
Spherical Tensor Expansion of the Potential

\[V = \sum_{\ell_1, \ell_2} \sum_{n_1} \sum_{m_1 m_2} \sum_{w, q} \frac{U(\ell_1 \ell_2, n_1 w q)}{R^{q + \ell_1 + \ell_2 + 2w}} \]

\[\otimes C(\ell_1 \ell_2 \ell, m_1 m_2 m) \ D_{m_1 n_1}^{\ell_1} (\Omega_1) \ D_{m_2 0}^{\ell_2} (\Omega_2) \ Y_{\ell m} (\omega) \]

- where \(C(\ell_1 \ell_2 \ell; m_1 m_2 m) \) is a Clebsch-Gordan coefficient, \(\Omega_1 = (\alpha_1, \beta_1, \gamma_1) \) and \(\Omega_2 = (\alpha_2, \beta_2, \gamma_2) \) are the Euler angles describing the molecular fixed axis relative to the space fixed axis. \(\omega = (\theta, \phi) \) describes the relative orientation of the centers of mass.

- Electrostatic interactions: \(q=1 \) and \(w=0 \)

- Atom-atom interactions: \(q=12 \) or \(6 \) and \(w \) defined by the order of the expansion where \(\text{Order} = \ell_1 + \ell_2 + 2w \)
CO_2

Linear molecule - Quadrupole moment

D_{-2}^2, D_0^2, D_2^2

Wave functions - D_J^{00}
Reduced matrix elements - CO$_2$

\[\int \Psi_{i'} V \Psi_i \, d\tau \propto \int D_{00}^{J_i} D_{k0}^{l_{1'}} D_{00}^{J_i} \, d\tau \]

\[C(J_{i'}, \ell_{1'}, J_i; 0, k, 0) \]

Only potential term remaining is \[D_{00}^2 \]
Trajectories

Parabolic Approximation

\[
\int_0^\infty 2\pi b \, db \rightarrow \int_{r_{\text{min}}}^\infty 2\pi r_c \, dr_c \left(\frac{v_c'}{v} \right)^2
\]

For many choices of the Lennard-Jones parameters, solutions of the second order in time equations lead to imaginary \(v_c' \). \(\rightarrow \) integration of cross-section cannot be performed.
Very simple system

Initial results CO$_2$-N$_2$ at 296 K

<table>
<thead>
<tr>
<th>Transition</th>
<th>γ cm$^{-1}$ atm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 \leftarrow 24</td>
<td>0.0457</td>
</tr>
<tr>
<td>29 \leftarrow 28</td>
<td>0.0289</td>
</tr>
<tr>
<td>31 \leftarrow 30</td>
<td>0.0176</td>
</tr>
<tr>
<td>33 \leftarrow 32</td>
<td>0.0022</td>
</tr>
<tr>
<td>41 \leftarrow 40</td>
<td>-0.1540</td>
</tr>
<tr>
<td>45 \leftarrow 44</td>
<td>-0.3868</td>
</tr>
<tr>
<td>47 \leftarrow 46</td>
<td>-0.6069</td>
</tr>
</tbody>
</table>
CO$_2$-N$_2$ v_3 P20 transition, $J_2=0$, parabolic trajectories, $T=100$ K
$CO_2-N_2 \nu_3$ P20 transition, $J_2=0$, HE trajectories, $T=100$ K
Close collisions and the trajectory model.
See talk V7 by J. Lamouroux for details
Integrand

As $Re\{S_2\}$ gets large square bracket goes to one.

$$\gamma_{f \leftarrow i} = \frac{n_2}{2 \pi c} \sum_{J_2} \langle J_2 | \rho_2 | J_2 \rangle \int_0^\infty v f(v) dv \int_0^{2\pi b} \left[1 - \cos(S_1 + \text{Im}(S_2)) e^{-Re(S_2)} \right] db$$

Test runs with electrostatic potential. We found cases where the square bracket is larger than one - unphysical.
CO$_2$-CO$_2$ 30012-00001 R50, J2=16, 296 K

S components

Re(S$_2$I$_2$)
Re(S$_2$F$_2$)
SMIDDLE

B(Å)

Im(S)

<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-50</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>50</th>
</tr>
</thead>
</table>

B(Å)
CO_2-CO_2 30012-00001 R50, J2=16, 296 K

S components

- $S1$
- $\text{IM}(S2I2)$
- $\text{IM}(S2F2)$
- $S2I2I-S2F2I+S1$

$\text{Re}(S2I2)$
$\text{Re}(S2F2)$
SMIDDLE
$S2I2R+S2F2R+\text{SMID}$

Graphs showing $\text{Im}(S)$ and $\text{Re}(S)$ against $\mathcal{B}(\text{Å})$.
CO₂-CO₂ 30012-00001 R50, J2=16, 296 K

Components

\begin{align*}
\text{Im}(1-\exp(-S))
\end{align*}

\begin{align*}
\text{Re}(1-\exp(-S))
\end{align*}

\begin{align*}
B(\text{Å})
\end{align*}

\begin{align*}
\bar{B}(\text{Å})
\end{align*}
J dependent - CO$_2$-CO$_2$ 30012-00001 R12, J2=16, 296 K

S components

$\text{Re(}S\text{)}$
$\text{Re(}S\text{)}$
$\text{SMIDDE}
$\text{S}2\text{I2R}+\text{S}2\text{F2R}+\text{SMID}$

$\text{Im(}S\text{)}$
$\text{IM(}S\text{)}$
$\text{IM(}S\text{)}$
$S2I2I=S2F2I+S1$

B(Å)

B(Å)
\[\ell_1 = 2, \ell_2 = 2 \text{ resonance function at } 296 \text{ K}, \ b = 5.45 \text{ Å} \]

Electrostatic potential calculations giving \(\varepsilon/k_b = 429.58 \text{ K} \) and \(\sigma = 3.17 \text{ Å} \)
\(\ell_1=2, \ell_2=2 \) resonance function at 296 K, \(b = 5.45 \, \text{Å} \)

Atom-atom expansion \(\rightarrow 8 \, 2 \, 2 \) giving \(\varepsilon/k_b = 158.06 \, \text{K} \) and \(\sigma = 4.22 \, \text{Å} \)
Line Shift

J-M Hartmann, JQSRT 110 (2009) 2019–2026

\[
\delta\left[(v_1 + \Delta v_1, v_2 + \Delta v_2, v_3 + \Delta v_3, J_f - J_i) \leftarrow (v_1, v_2, v_3, J_i)\right] = (J_i - J_f) \delta_{\text{rot}}(|m|) + (a_1 \Delta v_1 + a_2 \Delta v_2 + a_3 \Delta v_3) \delta_{\text{vib}}(|m|)
\]

Using Hartmann’s coefficients \(a_1\), \(a_2\), and \(a_3\) we form the ratios

\[
\begin{align*}
 r_{12} &= \frac{a_2}{a_1}, \quad r_{13} &= \frac{a_3}{a_1},
\end{align*}
\]

We adjust \(a_1\) and set \(a_2 = a_1 \cdot r_{12}\) and \(a_3 = a_1 \cdot r_{13}\) by matching to the data of Toth et al. and Devi et al. for the 30012-00001 band transitions.

Current values

\[
a_1 = 0.1000, \quad a_2 = 0.0516, \quad a_3 = 0.2236
\]
Atom-atom parameters

CO₂–CO₂ 30012–00001 band measurement vs. calculation

Temperature Exponent

m

844
1044
1244
1444
Future work

Potential

powers, order, rank

→ Aim is that a single calculation will give the half-widths and their temperature dependence, the line shifts and their temperature dependence.

results are strongly dependent on the potential
Acknowledgement

The authors are pleased to acknowledge support of this research by the National Science Foundation through Grant No. ATM-0803135. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.