Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification

Kevin C. Gross, Glen P. Perram, Ronald F. Tuttle

Air Force Institute of Technology
Riverside Research Institute

Ninth Biennial HITRAN Conference
Harvard-Smithsonian Center for Astrophysics
Cambridge MA
26 June 2006
Introduction

- Traditional battle space characterization
 - Classification of transient, infrared events
 - **Bomb detonations**, muzzle flashes, rocket and missile plumes

- Classifying explosives is difficult
 - No simple model exists for describing emissions from detonation fireballs
 - High-explosive detonations are non-reproducible
 - Inherent irreproducibility (age, mixture tolerances, casing design, impact angle, etc.)
 - Environmental interaction (soil type, atmospheric conditions, etc.)
 - Cost and safety concerns lead to small-scale tests with limited reproducibility
 - Broadband absolute radiometric signatures not *apparently* useful for classification
 - Roughly, variance within explosive class same size as variance between classes
Introduction

Framework for solving the explosives classification problem

- Collect data using spectrometers, radiometers, and several banded imagers
- Develop a *low-dimensional* phenomenological model for fireball emissions
 - Spectrometers: Chemistry
 - Imagers: Fluid dynamics
- Extract key features (fit model to data)
 - *Reproducible* within the same explosive class (small within-class scatter)
 - *Distinguishing* for different explosive classes (large variance between classes)
 - *Invariant* to uncontrollable factors
 - *Constrained* by physics
- Quantify classification potential of extracted features using pattern-recognition codes
Field Tests

- Radiant Brass III: Conventional Bomb
- Brilliant Flash II: Enhanced Novel Explosives (ENEs)
- Bronze Scorpio: IEDs

<table>
<thead>
<tr>
<th></th>
<th>RB3</th>
<th>BF2</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>56</td>
<td>44</td>
<td>58</td>
</tr>
<tr>
<td>Compositions</td>
<td>3 distinct</td>
<td>5 distinct</td>
<td>3 distinct</td>
</tr>
<tr>
<td>Sizes</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Delivered by</td>
<td>aircraft</td>
<td>Uncased</td>
<td>Cased artillery</td>
</tr>
</tbody>
</table>

- ABB/Bomem MR Series FTS
 - RB3: 16 cm⁻¹ / 21 Hz (InSb: 1800–7100 cm⁻¹, MCT 500-6000 cm⁻¹)
 - BF2: 4 cm⁻¹ / 8 Hz (InSb: 1800–7100 cm⁻¹, MCT 500-6000 cm⁻¹)
 - BS: 4 cm⁻¹ / 38 Hz (InSb: 1800–7100 cm⁻¹, InGaAs 6000-11000 cm⁻¹)
- Radiometers (4 MWIR bands)
- Banded Imagers (Vis, NIR, MWIR)
Temporal Profile

Fast-scanning FTS collects time-resolved spectra

Temporal profiles reveal detonation and afterburn timescales
Typical Spectra

Uncased Explosive, 4 cm$^{-1}$, 8 Hz
Uncased Explosive, 4 cm\(^{-1}\), 8 Hz

\(t = 0.362 \text{ s} \)
At each frequency, assume spectrum’s temporal evolution is quadratic over the scan time of the interferometer

\[I_1 = I_{\text{obs}}(\tilde{\nu}, x = 0) \quad I_2 = I_{\text{obs}}(\tilde{\nu}, x = L/2) \quad I_3 = I_{\text{obs}}(\tilde{\nu}, x = L) \]

\[I_{\text{obs}}(\tilde{\nu}) = I_2 - \frac{1}{4\pi^2L^2} \frac{\partial^2 (2I_1 - 4I_2 + 2I_3)}{\partial \tilde{\nu}^2} + i \frac{1}{2\pi L} \frac{\partial (I_3 - I_1)}{\partial \tilde{\nu}} \]

\[T = (T_H - T_L) e^{-k \Delta t} + T_L \quad T_H = 2000 \text{ K}, \quad T_L = 300 \text{ K}, \quad k = 1 \text{ s}^{-1} \]

\[\Delta t = 0.1 \text{ s}, \quad \Delta \nu = 8 \text{ cm}^{-1} \]
Atmospheric Compensation

Find single set of absorber concentrations for entire data cube

\[I_{obs}(\tilde{\nu}, t) = \tau(\tilde{\nu}) I_{src}(\tilde{\nu}, t) \]

\[\tau(\tilde{\nu}) = e^{\sum_i \varepsilon_i(\tilde{\nu}) c_i l} \]

\[I_{obs}(\tilde{\nu}, t) = \tau_i(\tilde{\nu}) \delta \tau_{j \neq i}(\tilde{\nu}) I_{src}(\tilde{\nu}, t) \]

\[\delta = c / c_{old} \]

\[\bar{I}_{obs} = \bar{\tau} \delta \bar{\tau}_r I_{src} \]

\[\bar{I}_{obs} = I_{obs}(\tilde{\nu}_i, t_j) / I_{obs}(\tilde{\nu}_i + k \Delta \tilde{\nu}, t_j) \]
Weighted linear regression to estimate δ

Atmospheric Compensation

Find single set of absorber concentrations for entire data cube

$$I_{obs}(\nu, t) = \tau(\nu) I_{src}(\nu, t)$$

$$\tau(\nu) = e^{\sum_i \varepsilon_i(\nu)c_i}$$

$$I_{obs}(\nu, t) = \tau_t(\nu)\delta \tau_{j \neq t}(\nu) I_{src}(\nu, t)$$

$$\delta = c/c_{old}$$

$$\bar{I}_{obs} = \bar{\tau}_m \bar{\tau}_r \bar{I}_{src}$$

$$\log \left(\frac{\bar{I}_{obs}}{\bar{\tau}_r \bar{I}_{src}} \right) = \delta \log(\bar{\tau}_m)$$

Estimate of $\log(\tau_m)$ which varies with time

Beer’s Law not strictly appropriate for moderate resolution spectra

$$\left(\int \tau(\nu) \text{ILS}(\nu - \nu') \, d\nu' \right)^\delta \neq \int \tau(\nu') \text{ILS}(\nu - \nu') \, d\nu'$$

Iteratively recompute τ_m with new concentration until $\delta = 1$

Weighted linear regression to estimate δ
Atmospheric Compensation

Radiant Brass III Field Test

[H$_2$O] (ppm)

[CO$_2$] (ppm)

[CH$_4$] (ppm)

Test Number

5 10 15

5 10 15

5 10 15

305±7 ppb
310 ppb

371±9 ppm
366 ppm

1.59±0.04 ppm
1.70 ppm

371±9 ppm
366 ppm

1.59±0.04 ppm
1.70 ppm
Radiative Transfer

(Over-) Simplified RT for fireball

Local thermodynamic equilibrium

No gradients (uniform T, \(\rho \))

No sources except fireball

No scattering

Fireball parameters: \(\rho(\text{H}_2\text{O}, \text{CO}_2, \text{CO}, T_g), T_c \)

Rough approximation to full RT solution

Ignore geometry

Include continuum emitters additively

\[
I_{ap} = t_a \left[A_c B(T_c) + A_g (1 - t_g) B(T_g) \right] + (1 - t_f) B(T_f)
\]

\[
t_g = t_g \left(T_g, [\text{H}_2\text{O}], [\text{CO}_2], [\text{CO}] \right)
\]

\[
t_g = \exp \left(-L \times \sum_i N_i \sigma_i(\tilde{\nu}, T_g) \right)
\]

H\(_2\)O & CO: HITEMP (HITRAN) database
CO\(_2\): CDSD
Modeling Results

\[p = [1.96E-01 \ 2.01E+00 \ 1.31E+03 \ 1.90E+04 \ 7.04E+04 \ 9.16E+02] \]

TNT (H\textsubscript{2}O/CO\textsubscript{2} \sim 0.4)

SE = 4.20, RMS Err = 14.4\%, Median iRel Err = 7.2\%
Modeling Results

\[p = [3.20E-01 \ 1.73E+00 \ 1.91E+03 \ 3.41E+04 \ 3.24E+04 \ 3.49E+03] \]

\[\text{ENE (H}_2\text{O/CO}_2 \sim 9.5) \]

\[I_{\text{obs}} - I_{\text{mdl}} \]

\[\text{SE} = 9.25, \text{RMS Err} = 10.0\%, \text{Median |Rel Err|} = 6.5\% \]
Feature Extraction

TNT (L) vs ENE (R)

TNT ($\text{H}_2\text{O}/\text{CO}_2 \sim 0.4$)

ENE ($\text{H}_2\text{O}/\text{CO}_2 \sim 9.5$)
Conclusions

• Conventional munitions
 • Fireball emission well represented by a single-temperature Planckian distribution over most of the MWIR
 • Non-Planckian emission observed in 2000-2200 cm⁻¹ is likely due to hot CO₂
 • Accurate atmospheric correction key to connecting this residual to fireball phenomenology
 • Temperature decays exponentially (some fireballs exhibit secondary maxima)
 • Area dynamics can be determined without imagery (awaiting confirmation from MWIR camera)

• Enhanced novel explosives
 • Substantial non-Planckian component is a function of H₂O and CO₂ concentrations
 • Extracted concentration ratio [H₂O]/[CO₂] connected to explosive stoichiometry
 • Simple model enables the study of fireball kinetics

• Explosives classification from optical signatures promising