Temperature dependence of N$_2$-, O$_2$-, and air-broadened half-widths of water vapor transitions: insight from theory and comparison with measurement

R. R. Gamache, B. K. Antony and P. R. Gamache
Department of Environmental, Earth & Atmospheric Sciences, Intercampus Graduate School of Marine Sciences and Technology
University of Massachusetts Lowell, 265 Riverside Street, Lowell, MA 01854-5045
USA

M. Birk, G. Wagner
Institute for Remote Sensing Technology
German Aerospace Center (DLR)
Münchner Str. 20, D-82234 Wessling, Germany

HITRAN 2006
Theory

Semi-classical formalism of Robert and Bonamy

- Complex formalism - halfwidths and line shifts
- Free from cut-off procedure and adjustable parameters
- Trajectories from solution of Hamilton’s eqs. or R-B parabolic approximation
- General spherical tensor expansion for the intermolecular potential
Intermolecular Potential

H$_2$O-N$_2$ and H$_2$O-O$_2$ systems

- Leading electrostatic components: d-q, q-q
- Atom-atom potential: expanded to 8th order
- The vibrational dependence of the isotropic potential uses the induction and London dispersion potentials
Spherical Tensor Expansion of the Potential

\[V = \sum_{l_1, l_2} \sum_{n_1, w} \sum_{m_1, m_2} \frac{U(l_1, l_2, n_1 w)}{R^{q + l_1 + l_2 + 2w}} \]

\[\otimes C(l_1 l_2, m_1 m_2 m) D_{m_1 n_1}^{l_1} (\Omega_1) D_{m_2 0}^{l_2} (\Omega_2) Y_{l m} (\omega) \]

- where \(C(l_1 l_2, m_1 m_2 m) \) is a Clebsch-Gordan coefficient, \(\Omega_1=(\alpha_1, \beta_1, \gamma_1) \) and \(\Omega_2=(\alpha_2, \beta_2, \gamma_2) \) are the Euler angles describing the molecular fixed axis relative to the space fixed axis. \(\omega=(\theta, \phi) \) describes the relative orientation of the centers of mass.

- Electrostatic interactions: \(q=1 \) and \(w=0 \)

- Atom-atom interactions: \(q=12 \) or \(6 \) and \(w \) defined by the order of the expansion where \(\text{Order}=l_1 + l_2 + 2w \)
S_1 term

$$\alpha = 9.86 + 0.29 \left(v_1 + \frac{1}{2} \right) + 0.03 \left(v_2 + \frac{1}{2} \right) + 0.28 \left(v_3 + \frac{1}{2} \right)$$
S_1 term

$$\alpha = 9.86 + 0.29 \left(\nu_1 + \frac{1}{2} \right) + 0.03 \left(\nu_2 + \frac{1}{2} \right) + 0.28 \left(\nu_3 + \frac{1}{2} \right)$$

Note, stretch modes have roughly the same contribution.
Halfwidth and Line Shift in RB theory

\[(\gamma - i\delta)_{f \leftarrow i} =\]

\[
\frac{n_2}{2\pi c} \left\langle v \times \left[1 - e^{-R_{S_2}(f,i,J_2,v,b)} e^{-i[S_1(f,i,J_2,v,b) + S_2(f,i,J_2,v,b)]} \right] \right\rangle_{v,b,J_2}
\]

Real terms Imaginary terms
Connecting states

Absorbing Molecule ↔ V ↔ Perturbing Molecule

Optical transitions

Collisionally induced transitions
N_2 and O_2 as perturbers

$B(N_2) = 2.0006 \, \text{cm}^{-1}$ $B(O_2) = 1.4377 \, \text{cm}^{-1}$

Energy gaps

$\sim 24 \text{ to } 960 \, \text{cm}^{-1}$ $\sim 17 \text{ to } 690 \, \text{cm}^{-1}$

Most probable states

$\Delta E = \sim 150 \, \text{cm}^{-1}$ $\Delta E = \sim 110 \, \text{cm}^{-1}$
Energies of collisionally connected states
Low J transitions

\[\Delta E \text{ small} \]

\[\Delta E_{i \rightarrow 1'} \]

\[\Delta E_{j2 \rightarrow j2'} \]

On resonance collisions, collisional contributions dominate the half-width
High J transitions

$\Delta E_{i \to 1'}$

$\Delta E_{J_2 \to J_2'}$

ΔE large

Off-resonance collisions, collisional contributions small, half-width dominated by vibrational terms.
ν₂ H₂O-N₂ P and R Doublet Transitions

(J±1₁,₁₁→₀,₀ and J±₁₀,₁₁→₁,₁)

● and ○ are calculated values associated with P and R lines such that (Kₐ’-Kₐ”)=(J’-J”) and (Kₐ’-Kₐ”)=-(J’-J”), respectively.

The horizontal dashed line indicates the pure dephasing contribution.

\(\nu_2 \) \(\text{H}_2\text{O}-\text{N}_2 \) P and R Doublet Transitions

\[(J_{\pm 1_1, J_{\pm 1}} \leftarrow J_{0, J} \text{ and } J_{\pm 1_0, J_{\pm 1}} \leftarrow J_{1, J})\]

- and \(\bigcirc \) are calculated values associated with P and R lines such that \((K_a' - K_a'') = (J' - J'')\) and \((K_a' - K_a'') = -(J' - J''),\) respectively.

The horizontal dashed line indicates the pure dephasing contribution

ν₂ H₂O-N₂ P and R Doublet Transitions

(J±1,₁₁,J±0,J and J±1,₀,J±0,J₁,J)

● and ○ are calculated values associated with P and R lines such that (Kα’-Kα”)=(J’-J”) and (Kα’-Kα”)=-(J’-J”), respectively.

The horizontal dashed line indicates the pure dephasing contribution

ν₂ H₂O-N₂ Doublet Q-branch Transitions

The J₁, J⁻¹ ← J₀, J and J₀, J ← J₁, J⁻¹) Q line doublets of the ν₂ band.

I are experimental values. ● and ○ are calculated values of the Ka’-Ka”=1 and Ka’-Ka”= -1 transitions, respectively.

The horizontal dashed line indicates the pure dephasing contribution

Calculated H$_2$O-N$_2$ γ and δ for the $J-1_{0,J-1} \leftarrow J_{1,J}$ transitions
Calculated $\text{H}_2\text{O-}N_2 \ \gamma$ and δ for the $J-1_0, J-1 \leftarrow J_1, J$ transitions

A factor of 8
Transitions with $Kc=J$ in bands involving three quanta of stretching vibration

[Graph showing data points with error bars, labeled as three quanta of stretch and ν_2 band, with measurement markers.]
Transitions with Kc=J in bands involving four quanta of stretching vibration
Calculations agree well with measurement.

What can theory tell us about the temperature dependence of the half-width?
Temperature Dependence “Rule-of-thumb”

For “on resonance” collisions the temperature dependence of the half-width is given by

\[\gamma \propto T^{\frac{(n+4)}{2n}} \]

Interaction n Interaction n

d-d 4 d-q, q-d 6
q-q 8 dispersion 10
Temperature Dependence of γ

- **Power law form**

$$\gamma(T) = \gamma(T_0) \left[\frac{T_0}{T} \right]^N$$

- **In practice plot (fit)**

$$\ln \left\{ \frac{\gamma(T)}{\gamma(T_0)} \right\} = N \ln \left\{ \frac{T_0}{T} \right\}$$
H$_2$O-N$_2$ system

“Dipole-Quadrupole” system – “rule-of-thumb” gives temperature dependence of $5/6$
H$_2$O-N$_2$ system

“Dipole-Quadrupole” system – “rule-of-thumb” gives temperature dependence of 5/6
T-dependence for individual lines

13 temperatures studied from 150-400 K
150., 200., 212., 225., 238., 275.,
Low J’’

half-widths are dominated by rotational contributions (S_2, on resonance).
Results of fit: Slope = 0.66969 Correlation Coefficient = 0.99996

H₂O−N₂ (010)−(00) 4 2 3 <-- 4 3 2
High J”

half-widths are dominated by vibrational contributions (S_1, off resonance).
Results of fit: Slope = -0.22065 Correlation Coefficient = -0.99246
Power law is not theoretically correct. Fit can be reasonable over small T range.

Results of fit: Slope = -0.22065 Correlation Coefficient = -0.99246
Intermediate J”

a mixture of rotational and vibrational contributions. \((S_1 \text{ and } S_2)\)
\[\ln \left(\lambda/\lambda_0 \right) \] vs. \[\ln \left(T_0/T \right) \]

Results of fit: Slope = -0.01031, Correlation Coefficient = -0.24803
Results of fit: Slope = -0.01031 Correlation Coefficient = -0.24803
Results of fit: Slope = -0.01540 Correlation Coefficient = -0.58501
Results of fit: Slope = -0.01540 Correlation Coefficient = -0.58501
Results of fit: Slope = -0.02650 Correlation Coefficient = -0.40953
Temperature Range of the fit

The derived temperature exponents are dependent on the range of the fit.
H₂O–air \(\nu_2 \) 5 0 5 \(\rightarrow \) 4 1 4

296-225 K

Results of fit: Slope = 0.59379 Correlation Coefficient = 0.99997
\(H_2O - air \) \(\nu_2 \) 5 0 5 -- 4 1 4

700-200 K

~11%

Results of fit: Slope = 0.65870 Correlation Coefficient = 0.99894
$\text{H}_2\text{O–N}_2$

$8_{26} \leftrightarrow 8_{17}$
\[14_{\text{H}_2\text{O}} \leftrightarrow 15_{\text{N}_2}\]

\(42\%\)
Comparison with measurement

Calculations are Ref 710, fit to 4 temperatures: 200, 225, 275, 296 K

Ref 70 Remedios, J. J., PhD University of Oxford, (1990)

Ref 155 M. Birk and G. Wagner, DLR, Private Communication, 2006. (5% error bar added)
H₂O−air

(010) ←→ (000) 3 3 0 ←→ 4 4 1
$200-700 \text{ K}$

$218-742 \text{ K}$

ν_2
200-700 K
218-742 K

H$_2$O-air (010)-(000) 5 0 5 <-- 6 1 6

CRB Results of fit: Slope= 0.55367 Correlation Coefficient=0.99705
DLR Results of fit: Slope= 0.61982 Correlation Coefficient=0.99786
Intermediate J line

H_2O–air (010)–(000) 9 0 9 <-- 10 1 10

200-700 K
218-742 K

CRB Results of fit: Slope= -0.02931 Correlation Coefficient= -0.61465
DLR Results of fit: Slope= 0.01774 Correlation Coefficient= 0.09387
Temperature exponent and error in the measurement
Add the error

0.1% change

H₂O-air → ν₂ → 202 ←→ 313

CRB Results of fit: Slope= 0.76876 Correlation Coefficient=1.00000

DLR Results of fit: Slope= 0.75729 Correlation Coefficient=0.99949
subtract the error

0.1% change

H₂O-air

\[\nu_2 \]

2 0 2 <-- 3 1 3
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218.393</td>
<td>0.020190313</td>
<td>0.0013993286</td>
<td></td>
</tr>
<tr>
<td>228.380</td>
<td>0.026663998</td>
<td>0.00035951458</td>
<td></td>
</tr>
<tr>
<td>239.380</td>
<td>0.027640273</td>
<td>0.00019956876</td>
<td></td>
</tr>
<tr>
<td>240.140</td>
<td>0.027037898</td>
<td>0.00039908337</td>
<td></td>
</tr>
<tr>
<td>247.833</td>
<td>0.027456045</td>
<td>9.9119296e-005</td>
<td></td>
</tr>
<tr>
<td>295.700</td>
<td>0.026773004</td>
<td>0.0001498490</td>
<td></td>
</tr>
<tr>
<td>295.700</td>
<td>0.026076377</td>
<td>0.00023978278</td>
<td></td>
</tr>
<tr>
<td>296.830</td>
<td>0.026616405</td>
<td>0.00010993732</td>
<td></td>
</tr>
<tr>
<td>296.890</td>
<td>0.026599465</td>
<td>8.8987300e-005</td>
<td></td>
</tr>
<tr>
<td>297.290</td>
<td>0.028175650</td>
<td>0.00011905204</td>
<td></td>
</tr>
<tr>
<td>315.990</td>
<td>0.027183601</td>
<td>8.9289202e-005</td>
<td></td>
</tr>
<tr>
<td>316.345</td>
<td>0.026646532</td>
<td>0.00010977972</td>
<td></td>
</tr>
<tr>
<td>543.220</td>
<td>0.026312130</td>
<td>9.0967588e-005</td>
<td></td>
</tr>
<tr>
<td>544.310</td>
<td>0.025933295</td>
<td>0.00010529308</td>
<td></td>
</tr>
<tr>
<td>741.850</td>
<td>0.024836019</td>
<td>0.00012515789</td>
<td></td>
</tr>
<tr>
<td>742.940</td>
<td>0.024825009</td>
<td>7.8498053e-005</td>
<td></td>
</tr>
</tbody>
</table>
Add the error
-83% change

CRB Results of fit: Slope= -0.02931 Correlation Coefficient= -0.61465
DLR Results of fit: Slope= 0.03245 Correlation Coefficient= 0.20687
subtract the error

88% change

\text{CRB Results of fit: Slope=-0.02931 Correlation Coefficient=-0.61465}

\text{DLR Results of fit: Slope=0.00212 Correlation Coefficient=0.00938}
HITRAN Algorithm
for temperature exponents of H_2O
Temperature exponents on the HITRAN database

<table>
<thead>
<tr>
<th>J</th>
<th>N</th>
<th>J</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.78</td>
<td>9</td>
<td>0.49</td>
</tr>
<tr>
<td>1</td>
<td>0.78</td>
<td>10</td>
<td>0.45</td>
</tr>
<tr>
<td>2</td>
<td>0.78</td>
<td>11</td>
<td>0.41</td>
</tr>
<tr>
<td>3</td>
<td>0.77</td>
<td>12</td>
<td>0.39</td>
</tr>
<tr>
<td>4</td>
<td>0.73</td>
<td>13</td>
<td>0.37</td>
</tr>
<tr>
<td>5</td>
<td>0.69</td>
<td>14</td>
<td>0.36</td>
</tr>
<tr>
<td>6</td>
<td>0.64</td>
<td>15</td>
<td>0.36</td>
</tr>
<tr>
<td>7</td>
<td>0.59</td>
<td>16</td>
<td>0.38</td>
</tr>
<tr>
<td>8</td>
<td>0.53</td>
<td>17</td>
<td>0.41</td>
</tr>
</tbody>
</table>
H_2O-N_2

ν_2 band transitions

$0.83 > N > -1.3$
ν_2 band transitions

$0.83 > N > -1.3$
Conclusions

- When γ and N are from rotational contributions. Vibrational dependence of γ is small, N is positive and follows the power law.
Conclusions

- When γ an N are from rotational contributions. Vibrational dependence of γ is small, N is positive and follows the power law.

- When γ an N are from vibrational contributions. Vibrational dependence of γ is large, N can be negative, the power law is approximate.
Conclusions

- When γ an N are from a mix of rotational and vibrational contributions. N is not described by the power law expression.
Conclusions

- When γ an N are from a mix of rotational and vibrational contributions. N is not described by the power law expression.
- N is dependent on the temperature range of the fit.
Conclusions

- When the temperature range is large, the power law becomes less valid.
Acknowledgments

The authors are pleased to acknowledge support of this research by the National Aeronautics and Space Administration (NASA) through Grant No. NAG5-11064 and by the National Science Foundation (NSF) through Grant No. ATM-0242537 and the University of Massachusetts Lowell.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of NASA or NSF.