Thermal Design and Analysis

Sang Park
Thermal Engineer

July 6th, 2004
Agenda

• Camera Section
 – Requirements
 – Thermal Design
 – Operational Profile (hold time, observation)
 – Optical Bench
 – Optical Assembly
 – Thermal Math Model
 – Cooling profile
 – Lens temperature profiles

• MOS Section
 – Thermal Design
 – Operational Profile (Transition time, Hold time)

• Planned Activities
Camera Section
Optical Assembly:

- Lens Temperature Gradient Requirements (degrees C):

<table>
<thead>
<tr>
<th>lens number</th>
<th>radial gradient</th>
<th>axial gradient</th>
<th>dimetral gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.18</td>
<td>46.30</td>
<td>222.22</td>
</tr>
<tr>
<td>4</td>
<td>1.39</td>
<td>48.31</td>
<td>555.56</td>
</tr>
<tr>
<td>5</td>
<td>3.97</td>
<td>42.74</td>
<td>370.37</td>
</tr>
<tr>
<td>6</td>
<td>4.83</td>
<td>222.22</td>
<td>1111.11</td>
</tr>
<tr>
<td>7</td>
<td>92.59</td>
<td>2777.78</td>
<td>22222.22</td>
</tr>
<tr>
<td>8</td>
<td>2.78</td>
<td>42.74</td>
<td>555.56</td>
</tr>
<tr>
<td>9</td>
<td>2.58</td>
<td>44.44</td>
<td>370.37</td>
</tr>
<tr>
<td>10</td>
<td>3.58</td>
<td>113.38</td>
<td>1234.57</td>
</tr>
<tr>
<td>11</td>
<td>2.47</td>
<td>44.44</td>
<td>358.42</td>
</tr>
<tr>
<td>12</td>
<td>3.83</td>
<td>48.31</td>
<td>483.09</td>
</tr>
<tr>
<td>13</td>
<td>2.22</td>
<td>46.30</td>
<td>252.53</td>
</tr>
<tr>
<td>14</td>
<td>5.05</td>
<td>156.49</td>
<td>1221.00</td>
</tr>
</tbody>
</table>
Camera Section Thermal Features

- Multi-layer insulation
- GRISM Thermal Shield
- Optical Assembly Lenses 9-14 Thermal Shield
 Low e exterior, high e interior
- Optical Assembly Lenses 3-8 Thermal Shield
 Low e exterior, high e interior
- Camera Detector
- LN2 Reservoir
- Kapton Heaters On Lens cells
- Optical Bench in intimate Contact with the Vee-Block eGraf 1205
Optical Bench Thermal Design

• 100w Heater power total
 • 2x 50w heater zones
 • Proportional heater controller
 CryoCon Model 34 (Baseline)
 • MINCO Kapton Heaters

• 12 temperature sensors
 • 8 sensors from the controller
 • 4 sensors from data logger

• Rate of cooling: Approximately 72 hours
 • Maintain less than 2 degree C gradient in lenses
Optical Bench Thermal Design

• Thermal Shroud, internal surface finished with black hard anodize
 • Emissivity = 0.9
 • Thermal radiation dominant design

• Thermal Shroud, external surface finished with Low “e” tape (Aluminized Kapton, low outgas)
 • Emissivity = range 0.03 - 0.05

• Multi-layer Insulation (effective emissivity = 0.02 – 0.03) to cover internal surface of the most outer housing structure

• Intimate contact with the LN2 reservoir
 • GrafTech eGraf 1205 thermal interface material
Optical Bench Thermal Design

- Camera section Dewar has 100+ liters of LN2 capacity
 - Integrated vertical internal fins
 - Thermal path
 - Liquid baffles
 - Hold time: approximately 48 hours
 - Boil-off rate: .022 liter/hr-watt
 - Approximately 100w absorbed from the local ambient at 20C
 - Based on effective emmitance of 0.03 (multi-layer insulation)
 - Continuous supply of LN2 during the cool down period
Optical Assembly

Thermal Math Model:
Thermal Desktop/SINDA (Finite Difference Analyzer)
Optical Assembly
Results Thermal Math Model

Worst case: 100% radiation heat transfer Shown
Requires Conductive path,
Design to be determined
Thermal Properties

<table>
<thead>
<tr>
<th>Description</th>
<th>Material</th>
<th>Thermal Conductivity</th>
<th>Specific Heat</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K at Temperature (k)</td>
<td>Cp at Temperature (k)</td>
<td>J/kg-k</td>
<td></td>
</tr>
<tr>
<td>Lens 3,4,8</td>
<td>CaF2</td>
<td>10 w/m-k 273k</td>
<td>0.204 cal/g-k</td>
<td>3.18 gm/cc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.71 w/m-k</td>
<td>888 J/Kg-k</td>
<td>3.18 gm/cc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.71 w/m-k</td>
<td>854 J/Kg-k</td>
<td>3.18 gm/cc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88 61 85.32 280 3.18 gm/cc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 16.5 104.51 577</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>320 11.7 186 699</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>216.4 757</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>276 837</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>296.5 853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lens 5</td>
<td>BaF2</td>
<td>286 11.72 w/m-k</td>
<td>410 J/Kg-k</td>
<td>4.89 gm/cc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>286 11.7 w/m-k</td>
<td>274 .096 cal/gm-k</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>311 7.1 w/m-k</td>
<td>0.456e3 J/Kg-C</td>
<td>4.89 gm/cc at 20C</td>
</tr>
<tr>
<td>Lens 6</td>
<td>ZnSe</td>
<td>298 18 w/m-k</td>
<td>339 J/Kg-k</td>
<td>5.27 gm/cc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 18 w/m-k</td>
<td>296 0.081 cal/gm-k</td>
<td></td>
</tr>
<tr>
<td>Lens 7</td>
<td>Fused Qtz</td>
<td>2 w/m-k</td>
<td>2.21e3 kg/m-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>283 1.46 w/m-k</td>
<td>298 670-740 J/kg-k</td>
<td>2.2 gm/cc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23 0.56 73 218.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>148 1.12 193 400</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>273 1.44 393 800</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>344 1.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thermal Properties

eGraf™ 1200 Thermal Resistance vs. Pressure

Graftech Inc. teamed with a leading university to measure the specific thermal resistance of eGraf 1200 Series Thermal Interface Material versus pressure. The results of these tests are shown in the graph below.

Testing parameters:
- Test Method: ASTM D5420 modified
- Test range: 10 to 100 Psi
- Cut of Flatness of test blocks: < 0.000015 inches out of flat

GrafTech eGraf 1205 as a thermal interface material between the Optical assembly/Optical bench and MOS Dewar/the wheel support plate
Optics Thermal Math Models

Lens #3 CaF2
Optics Thermal Math Models

Lens #3: Cool down Profile to maintain less than 2 deg C gradient
Based on 8 hour shroud temperature transition

Temp (k) vs. time (sec)
(259.2ksec = 3 calendar days)
Optics Thermal Math Models

Lens #4 CaF2
Optics Thermal Math Models

Lens #4: Cool down Profile to maintain less than 1.4 deg C gradient
Based on 8 hour shroud temperature transition

Temp (k) vs. time (sec)
(259.2ksec = 3 calendar days)
Optics Thermal Math Models

Lens #5 BaF2
Lens #5: Cool down Profile to maintain less than 4.0 deg C gradient. Based on 8 hour shroud temperature transition.

Temp (k) vs. time (sec)
(259.2ksec = 3 calendar days)

BaF2 is known to be susceptible to Thermal Shock.
Optics Thermal Math Models

Lens #3 CaF2

Lens Valve Temperature = 20 degC (293k)

\[T_f = 86.6K \]

Lens #3: Lens Valve Temperature Response Profile
Assumption: Initial Temperature=80K
Temp (k) vs. time (sec)
(28.8ksec = 8.0 Hours)

Lens #3 Temperature profile
MOS Section
MOS Section

- MOS Section has 45+ liters of LN2 capacity
 - Integrated internal fins
 - Thermal path
 - Liquid baffles
 - Hold time: approximately 40 hours at Max capacity
 - Potentially only 15 liters may be filled based on a fill orientation
 - Approximately 13 hours hold-time (horizon pointing, fill-tube at bottom)
 - Boil-off rate: 0.022 liter/hr-watt
 - Approximately 50w absorbed from the local ambient at 20C
 - Based on effective emittance of 0.03 (Thermal shields plus Multi-layer insulations)
 - Continuous supply of LN2 during the cool down period
MOS Section Thermal Design

• Surface finishes
 – Internal to thermal shield: Black Anodize finishes
 – External to the thermal shield: Low “e” tape (Aluminized Kapton, low outgas)

• Thermal shield locations

• Dewar location

• 4 temperature sensors
 – 4 sensors from data logger
MOS Section

Results of Preliminary Thermal Analysis
Heritage: FLAMINGOS2 Cooling profile

Cool down rate for MOS Wheel: MAIN.T3

Cool down rate for Dekker Wheel: MAIN.T2

Temp (K) vs. Time (Sec)
Planned activities

• Camera Section
 – Analyze Detector Assembly
 – Improve transition time to cool down
 – Generate detailed thermal math model (TMM)
 • Analyze individual lens thermal performances
 • Grism wheel thermal profiles
 – Characterize thermal interaction between the camera and MOS sections

• MOS Section
 – Improve transition time to cool down
 – Design thermal shield
 – Determine temperature stability due to the environmental conditions

• Integrated Thermal-Stress Model

• Specify and order thermal related components (heater, MLI materials, surface finishes/tapes etc.)