45 Years of Infrared Astronomy at the Air Force Laboratory

Dr. Stephan Price
Space Vehicles Directorate
First Near IR Surveys

- Freeman Hall conducted the first IR survey (1962)
- TMSS (1965 – 1967) by Neugebauer and Leighton
- Southern sky (1966 – 1967) by Price
Infrared Celestial Backgrounds Program

• Define the nature & detailed character of the infrared celestial background

• Probe-rocket based experiments (1970 – 1985)
 – 20 successes out of 23 attempts

• Satellites
 – Midcourse Space Experiment (1996 – 1997)
 – Observations with ISO and Spitzer

• 2MASS
 – Supported proof of concept study
First AFCRL Experiments

- Two proof of concept flights in 1970
 - Piggy-backed on an atmospheric experiment
 - Detected Orion Nebula
 - Lessons learned

- ARPA & AFCRL also provided funds for
 - Four Cornell rocket-based experiments (1970 – 1976)
 - Caltech & U. of Ariz. for 5 and 10 µm ground-based surveys.

- Sensor (top left)
 - Double folded optics
 - 4” primary mirror
 - Linear array of 6 Mid-IR detectors
HISTAR & HIStar South

• First successful mid-IR survey
 – HISTAR from White Sands
 • April 1971 – Dec 1972 (7 flights in 20 months)
 – HI Star South (Woomera)
 • 1974
 • Southern sky survey

• Results
 – 4, 11, 21 and 27 µm point source catalog
 – First large scale maps of the diffuse IR emission from the galactic plane & the zodiacal background
Cygnus X – HISTAR vs MSX

- HISTAR had ac coupled electronics
 - Extended emission extracted by digitally inverting the high frequency attenuation
 - A comparison of the HI STAR Cygnus X map to a higher resolution MSX image is shown
Background Measurements Program

- 35 cm diam. telescopes
- SPICE (left)
 - 11-, 20- & 27 µm
- FIRSSE (above)
 - 20, 27, 50 & 90 µm
- X10 HISTAR sensitivity
Launch of CB Experiment

- T-3 day rehearsal above
- Launch at left
BMP Results
Midcourse Space Experiment (MSX)
The IR Galactic Center

MSX (left) and Spitzer (right): IR 3 color images of the Galactic center
MSX Cygnus X 3-color Image
Current Activities

• Extend the absolute spectral fluxes of the calibration network stars into SWIR & visible to support system calibration at these wavelengths

• Upgrade entire calibration network
 – Create 0.4 – 30 μm spectral templates
 – Apply templates to all tertiary standards
 – Include additional spectral types
 – Add best characterized stars from the Bright Star Atlas to calibration network

• Thermo-physical lunar model
Application: Spitzer Space Telescope

Spitzer Infrared Array Camera calibration paper*:
Systematic bias between K star calibrators and A star calibrators in the 3.6 and 4.5 µm bands – K stars rejected

Original CWW spectrum of α Tau: bias at wavelengths <5 µm

New SWS+MSX K star spectra remove the bias allowing use of K star calibrators

Reach et al. 2005
The Moon for Calibration

- Extended ~0.5° source
 - Only celestial object beside the Sun for radiance calibration
 - Radiance comparable to that from the Earth – within dynamic range of Earth looking sensors

- Irradiance calibration for low resolution and low sensitivity instruments

- Complicated model needed
 - Complex viewing geometry due to lunar orbit
 - Complex albedo distribution
 - Thermo-physical model

- USGS products
 36 narrow spectral bands 0.35 µm < λ < 2.39 µm