Dust production in Type II SNe; the case of SN 2004et

Masaaki Otsuka (STScI), Margaret Meixner (STScI), and SEEDS collaborators
Dust found in early galaxies

- 10^8 Msun dust formed within ~ 1 Gyr
- candidate of dust producers in galaxies

 Type II SN

 Lifetime ~ 10 Myr

 AGB stars

 Lifetime ~ 1 Gyr

 Perhaps, Type II SNe are main dust producers,

although > 0.1 Msun per a SNe (Dwek 2007, etc)

250GHz contours of a $z=6.4$ QSO
(Bertoldi et al. 2003, CO map)

The age of $z\sim 6.4$ galaxy = 840Myr
3 Signatures for dust formation

1. **Linearly dropping magnitude with Increasing tau**

2. **Asymmetric blue-shifted emission lines**

3. **IR excesses**, which appear 1-3 years after the SN explosion as newly-condensed dust cools
Missing Dust mass problem

Q. Can we explain 10^8Msun dust in early galaxies with SN dust?

A. No enough. It's difficult.

SN birth rate: $\sim 0.01 \text{ SNe / yr}$

Dust / a SN: $4 \times 10^{-4} - 0.02 \text{ Msun at } \sim 1-2 \text{ yr in } <10 \text{ SNe}$

Dust surviving efficiency at 10^5 yr: < 0.5

for Type II SNe evolved from 15 Msun stars (Kozasa et al. 2008)

Host galaxy: $\sim 13 \text{ Gyr}$

$\Rightarrow < 1.6 \times 10^6 \text{ Msun}$

Are dust mass in SNe underestimated?

Before final decision, we need to increase samples?
SEEDS project

SEEDS - `Survey for the Evolution of Emission from Dust in Supernovae

Aim
Search for signatures of newly formed dust in the SN ejecta. Quantify their contribution to the dust budgets of galaxies.

Targets
> 1 yr old Type II SNe in nearby galaxies (<15 Mpc)

Data
0.4-24 μm data taken by Gemini/WIYN/HST/Spitzer

Method
Using the 3-D Radiative transfer code MOCASSIN
SN 2004et in SN factory NGC 6946

- Discovered Sep 22, 2004
- 15-24 Msun red super giant
- 8th SN in the host Galaxy (0.08 Type II SNe / 1 year)
- Observed with Spitzer before explosion by the SINGS
- Total dust mass in NGC6946 $>9 \times 10^7$ Msun (Alton et al. 2002)
- From ~300 days, dust formation started (consist with theory)
- Increasing tau: 0.2 (300 d)/0.4 (400 d)/0.8 (460 d)/1.0 (690 d)
- At >1000 days, the magnitudes are NOT dropping.
Evaporated radius by explosion $\sim 10^{17}$ cm
SN ejecta speed ~ 1300 km/s @ Ha
10^{17} cm $\div 1300$ km/s ~ 32 yr

No interaction between CSM and SN ejecta
\Rightarrow scattered Light Echo
- Expansion velocity: $\sim 1300 \text{ km/s} @ \text{Ha}, \sim 1000 \text{ km/s} @ \text{[Fe II] line}$
 → standard picture of the stellar structure is KEEPING

- The flux density of Ni becomes stronger.
 → Evidence of radioactive decay (Fe \rightarrow Co \rightarrow Ni)
SED fitting using MOCASSIN

- For days 300, 360, 406, 464, 690, 828
 - Investigating temporal dust mass evolution
- the radii of the SN dust shell
 - Keeping Rout/Rin ratio = 1.3
- Smooth & Clumped dust grain distributions
 - clumped dust filling factor = 0.01
 - clumped dust density = 100x(smooth dust density)
- Carbon:Silicate = 60%:40%
- Local heating source
 - Diffuse Luminosity
 - Keep heating temperature (7,000 K)
SED model results smooth clumped

Day 300
- 4.5(−6) Msun
- 1.1(−5) Msun

Day 360
- 6.9(−6) Msun
- 1.8(−5) Msun

Day 406
- 1.8(−5) Msun
- 5.9(−5) Msun

Day 464
- 2.6(−5) Msun
- 1.1(−4) Msun

Day 690
- 2.2(−4) Msun
- 2.0(−3) Msun

Day 828
- 2.3(−4) Msun
- 2.1(−3) Msun
Temporal evolution of dust mass

- 1.5×10^{-3} Msun (Clumped) – 1.6×10^{-4} Msun (Smoothed) per yr
- Duration time of dust formation ~ 30 yr
- (Expected) surviving total dust after 10^5 yr in SN2004et: 2×10^{-2} Msun $<\sim\sim >0.1$ Msun (theory) for 15 Msun progenitor SN
Summary & Future works

We investigate dust production in SN 2004et

- We confirmed 3 dust formation signatures.
- We found a scattered light echo.
- We constructed SED models and estimated dust mass. The expected total dust mass is $<2 \times 10^{-2}$ Msun.
- If we perform far-IR observations, more dust might be found.
- To investigate surviving dust mass rate, it would be necessary to research dust around SNRe using the ALMA, Herschel, SPICA, JWST.
Spectra of SN 1987A