ACCRETION WINDS FROM SN TYPE Ia PROGENITORS AND SUPERNOVA REMNANT EVOLUTION

Dan Patnaude (SAO)
INTRODUCTION

• Progenitors for Type Ia SNe have not been confidently identified (Hillebrandt & Niemeyer 2000)
• Type Ia’s are the result of a thermonuclear explosion of a C+O white dwarf that is destabilized by accretion from a binary companion
• Single degenerate is most promising, but requires 0.2 - 0.7 M_{\odot} of material to be transferred to the white dwarf while avoiding unstable degenerate conditions on the white dwarf surface (Langer et al. 2000; Nomoto 1982)
Accretion Winds

- Models for SD-Ch scenarios predict outflows during the pre-supernova evolution.
- If these outflows are present, they will leave their imprint on the circumstellar medium.
- Prompt emission at radio/X-ray wavelengths has not been detected in Type Ia events (Panagia et al. 2006; Hughes et al. 2007).
ACCRETION WINDS

• Key parameter that determines whether a binary system will lead to a Type Ia SN is the accretion rate of the white dwarf

• Stable accretion depends upon the white dwarf mass, metallicity of the material, and rotation, but is generally:

\[\dot{M}_{\text{stable}} = 10^{-7} M_\odot \text{yr}^{-1} \]
ACCRETION WINDS

- At higher accretion rates, the shell can puff up to red giant dimensions (Nomoto & Kondo 1991):
 \[
 \dot{M} = \dot{M}_{\text{Edd, nuc}} \simeq 6 \times 10^{-7} M_\odot \text{yr}^{-1}
 \]

- A solution was proposed whereby the luminosity from the shell nuclear burning drives an optically thick "accretion wind" from the white dwarf, such that the effective accretion rate is below \(\dot{M}_{\text{Edd, nuc}} \).
ACCRETION WINDS

- Hachisu et al. (1999a,b) modeled the evolution of these winds
- found timescales $\sim 10^5$ yr and mass loss rates $\sim 10^{-6} \, M_{\text{sun}} \, \text{yr}^{-1}$
- Observations of candidate Type Ia systems such as RX J0513.9-5961 show outflow velocities $\sim 4000 \, \text{km} \, \text{s}^{-1}$ and mass loss rates $\sim 2 \times 10^{-6} \, M_{\text{sun}} \, \text{yr}^{-1}$
COMPARISONS TO SNRs

- Remnants of Type Ia SN are typically thought to be expanding into a uniform CSM
- Accretion wind outflows will shape the CSM in a way similar to what is found around core collapse environments
- This should affect both the morphology and emitted spectrum of the remnant
Comparisons to SNRs

- Badenes et al (2007) compared Chandra observations of several Ia SNRs to models that include an accretion wind mass loss phase.
COMPARISONS TO SNRs

- Badenes (2007) parametrized accretion wind models
- Models either show accretion winds up to the Type Ia event or in some cases the enter a mass conservative phase
Standard models with fast winds ($\sim 10^3$ km s$^{-1}$) predict shocked wind densities of $\sim 10^{-4}$ cm$^{-3}$.

Lower outflow velocities predict higher shocked wind densities, and dense radiative shells at radii ≤ 10 pc.

Lower limit on outflow velocity is set by WD escape velocity.
COMPARISONS TO SNRs

• CSM structures in the slow regime are hard to distinguish from the constant ambient medium models.

• Models for SNR evolution do not seem to agree with either the dynamics (i.e. the forward shock velocity) or observed X-ray emission of SNR Type Ias.
A new class of Ia’s has been identified with strong CSM interactions (2002bo, 2002ic, 2005gj, etc).

- have outflows $\sim 10^{-5}$ M_{sun} yr$^{-1}$ and low wind velocities.

Lightcurve for SN 2002ic. The lightcurve resembles that of a core collapse SN. SN 1994D is also classified as a Ia.
Kepler’s SNR

- Has been classified as a Type Ia
- Has a dense CSM interaction in the north
- Thought to have a dense, slow outflow from progenitor system