VLBI with the SMA: Observing an Event Horizon

Sheperd Doeleman MIT Haystack Observatory

VLBI with the SMA: Observing an Event Horizon

Sheperd Doeleman MIT Haystack Observatory

• Stellar orbits approaching within 45 AU.

Schoedel et al 2002

- Stellar orbits approaching within 45 AU.
- Proper motions < 1km/s: M>10^5 Msol (Backer & Sramek 1999, Reid & Brunthaler 2004)

- Stellar orbits approaching within 45 AU.
- Proper motions < 1km/s: M>10^5 Msol (Backer & Sramek 1999, Reid & Brunthaler 2004)
- Short time scale X-ray flares (300 sec rise).

- Stellar orbits approaching within 45 AU.
- Proper motions < 1km/s: M>10^5 Msol (Backer & Sramek 1999, Reid & Brunthaler 2004)
- Short time scale X-ray flares (300 sec rise).
- IF flares with modulation (a>0).

Resolving Rsch-scale structures

Spinning (a=1)

Non-spinning (a=0)

 SgrA* has the largest apparent Schwarzschild radius of any BH candidate.

• Rsch = $10\mu as$

• Shadow = 5.2 Rsch (non-spinning) = 4.5 Rsch (maximally spinning) Falcke Melia Agol

Short Wavelength VLBI

Resolution:

 λ /D (cm) ~ 0.5 mas λ /D (1.3mm) ~ 30 µas λ /D (0.8mm) ~ 20 µas

ISM Scattering:

 $\Theta scat \sim \lambda^2$

Sensitivity is critical.

1.3mmλ Observations of SgrA*

Builds on long history of SgrA* VLBI and mmVLBI.

Determining the size of SgrA*

 $\theta_{OBS} = 43\mu as (+14, -8)$ $\theta_{INT} = 37\mu as (+16, -10)$ $\theta_{OBS} = \sqrt{\theta_{INT}^2 + \theta_{SCAT}^2}$

 $1 \operatorname{Rsch} = 10 \mu as$

$$\rho = 10^{23} M_{\odot} pc^{-3}$$

Alternatives to a MBH

Most condensations of smaller mass objects evaporate on short timescales. Current obs imply Tevap<500 yrs.
Boson Star is a remaining 'exotic' possibility where R=Rsch + epsilon.

Depends on Boson mass.

Proof of an Event Horizon?

•If no EH, then the 'surface' will radiate in the NIR, but none seen. (Broderick, Loeb, Narayan 2009)

Broderick, Fish, Doeleman & Loeb (2009)

Broderick, Fish, Doeleman & Loeb (2009)

April 2009: SgrA* Flare on Rsch scales

Time Variable Structures

- Variabilty in NIR, x-ray, submm, radio.
- Probe of metrics near BH, and of BH spin.
- Violates Earth Rotation aperture synthesis.
- Use 'good' closure observables to probe structure as function of time.
- Work with Avery Broderick and Avi Loeb.

Hot Spot Model for SgrA* Flares

Hot Spot Model for SgrA* Flares

Tracing Black Hole Orbits with VLBI

12

Measuring Black Hole Orbits with VLBI

Measuring Black Hole Orbits with VLBI

Measuring Black Hole Orbits with VLBI

VLBA Movie of M87 @ 43 GHz (7 mm) Craig Walker et al. 2008

More luminous class of AGN with more massive central BH Eg M87, half the apparent size of SgrA* (1000 x more massive)

Beam: 0.43x0.21 mas

0.2mas = 0.016pc = 60R_s 1mas/yr = 0.25c

VLBA Movie of M87 @ 43 GHz (7 mm) Craig Walker et al. 2008

More luminous class of AGN with more massive central BH Eg M87, half the apparent size of SgrA* (1000 x more massive)

Comparison with Jet Models

Building the Event Horizon Telescope Astro2010 Roadmap Phase I

- Adding Telescopes: 7 station array.
- VLBI backends/recorders that support > 8Gb/s.
- Central wideband correlator (up to 64Gb/s).
- Phased Array processors (SMA, ALMA, PdeBure, CARMA)
- Begin work on low noise, dual pol receivers.
- Low noise freq. references: H-Masers/CSO's
- Recording media for 7-station 8Gb/s array
- New site studies
- Turn-key operations: remote operations
- Project management, operations.
- Endorsed by RMS Panel of US Decadal Review

Adding Stations

Adding Stations

Progression to an Image

GR Model

7 Stations

13 Stations

Testing the No Hair Theorem

- BH defined solely by spin and mass.
- Test by perturbing quadrupole: $Q'=-a^2/M^2 + e$
- 'Shadow' size, ISCO, orbital period, all now depend on M, a, e.

Testing the No Hair Theorem

- BH defined solely by spin and mass.
- Test by perturbing quadrupole: $Q'=-a^2/M^2 + e$
- 'Shadow' size, ISCO, orbital period, all now depend on M, a, e.

Phasing up the SMA

CASPER Phased Array (Weintroub et al)

mm/submm VLBI Collaboration

MIT Haystack: Alan Rogers, Vincent Fish, et al Harvard CfA: Jonathan Weintroub, Jim Moran, Rurik Primiani, Ken Young, Ray Blundell, Mark Gurwell, et al MPIfR: Thomas Krichbaum, Anton Zensus, Alan Roy U. Arizona Steward Obs: Lucy Ziurys, Robert Freund, Dan Marrone **CARMA:** Dick Plambeck, Mel Wright, David Woody, Geoff Bower James Clerk Maxwell Telescope: Remo Tilanus, Per Friberg **UC Berkeley SSL:** Dan Werthimer **Caltech Submillimeter Observatory:** Richard Chamberlin **ASIAA:** Paul Ho, Makoto Inoue **NAOJ:** Mareki Honma **IRAM:** Michael Bremer **NRAO:** John Webber, Ray Escoffier, Rich Lacasse

VLBI and the SMA

- 2006/2007: H-Maser and LO ref for JCMT
- 2009: Tests of phased array (SMA+CSO+JCMT)
- 2010: Astronomical obs. with phased SMA, including polarimetry.
- 2011: Phased Mauna Kea, CARMA, SMT, APEX, IRAM + XMM and Chandra
- Next generation phased array (more bandwidth, new hardware)
- Application of SMA phasing techniques to CARMA, ALMA.

Summary

• SMA is pivotal contributor to 1.3mm VLBI array.

- Results confirm ~4Rsch diameter for SgrA*
- Similar compact structure observed in M87 Jet.

Imaging an Event Horizon and observing BH orbits are within reach in <5 years.
Pioneering work at SMA (Weintroub et al) on FPGA approach to array phasing.

• EHT highlighted in RMS Panel Report.

• SMA's role will be enhanced with broadband upgrades and emergence of ALMA.