Atmospheric Delay Correction

Paul Yamaguc

- Mitigating wet path delay via O₃ radiometry
- SMA cabin spectrometers
- Optics, calibration, and receiver issues
- Current status

The wet path delay problem

Example: At 690 GHz (435 μ m), the excess path is 6.8 \cdot PWV, leading to complete loss of coherence for line-of-sight PWV differences of ~50 μ m

Mitigating wet path delay

- Atmospheric radiometry
 - 22 GHz / 183 GHz line (IRAM / ALMA)
 - H₂O continuum
 - Ozone line (SMA, in development)
- Astronomical reference source
 - Fast switching (ALMA)
 - Paired antennas (CARMA)

Measuring H_2O with O_3

- Continuum absorption by H_2O in the troposphere attenuates O_3 line emission.
- Measure changes in attenuation with the active astronomical receiver.
- O_3 variations are slow, and common-mode over array.

- Example: choose a weighting function *w*(*v*) which selects for PWV fluctuations, rejects receiver gain fluctuations
- Note that $dT_{sys} / dg \propto T_{sys}$, so require that $\int w(v) \cdot T_{sys}(v) dv = 0$.

Weighting function

- Simple choice: symmetrically-weighted boxcar to measure line contrast, cancel gain fluctuations.
- Optimal weight function might need to reject baseline ripple, etc.
- Require accurate spectral calibration of the receiver.

New hardware development

- SMA correlator can't simultaneously auto- and cross-correlate all antennas; other practical issues.
- SMA chunk power detectors don't offer sufficient resolution, stability affected by phase rotators.
- Solution dedicated single-dish backends for:
 - Delay correction / atmospheric radiometry
 - System testing
 - Astronomy

SMA cabin spectrometers

- 2 Gs / s, 16K channel FFT analyzer (Acqiris/Agilent)
- 1 GHz spectral window tunable across IF with programmable downconverter, 3.6 GHz 8 GHz.
- Fed from auxiliary BW doubler port, independent of astronomical signal path.
- 6 units in operation, 2 ready in Hilo, one lab spare in Cambridge.
- Operate continuously, with opportunistic calibration.
- 5 ms minimum integration cycle

Snapshot during observation – 350 GHz

Isothermal T_{sys}^* , 6.4 GHz – 7.4 GHz. Note baseline ripple, distortion in antennas 1 & 5.

Practical issues

- Baseline ripple varies with mixer RF match
 - Receiver to subreflector
 - Receiver to cal loads
- Receiver calibration
 - Gain compression affects two-load calibration
 - Mixer IF match can change with RF loading
- Analysis is complicated by DSB operation
- Modify hardware, or understand effects well enough to handle algorithmically.

SMA optics and baseline ripple

- SMA optics have pupils at subreflector, cal loads, and receiver feed aperture
 - Good design for an interferometer element, not so good for an atmospheric radiometer
- Efficient optical coupling between pupil planes promotes baseline ripple.
 - Periods: Rx cal load = 46.7 MHz; Rx subreflector = 17.8 MHz
 - Cal load ripple has been minimized by tilting the loads.
 - Subreflector ripple shifts with focus tracking during observations

Cal load ripple and gain compression

- Compression leads to overestimate of T_{rx} .
- Ripple is magnified by the small difference between T_{amb} and T_{hot} .
- Alternative use sky dip normalized to one load.

Isothermal sky dip

Start with an isothermal sky dip:

$$P_{sys} = P_{rx} + g T_{atm} (1 - e^{-\tau_z m}) + g T_{cb} e^{-\tau_z m}$$

Eliminate gain with Y-factor relative to ambient load:

$$Y_{amb} = \frac{1}{T_{rx} + T_{amb}} \left[T_{rx} + T_{atm} (1 - e^{-\tau_z m}) + T_{cb} e^{-\tau_z m} \right]$$

Vary air mass *m* and fit T_{rx} , zenith opacity τ_z , for each channel. For DSB, strictly valid only for $\tau_z \ll 1$.

Good and bad channels from one sky dip

Error bars correspond to $S/N = \sqrt{Bt}$ Channel bandwidth B = 61 KHz, integration time t = 1 s Four points per airmass

Sky dip – all channels (antenna 1)

Here, T_{rx} includes all optical losses and elevation-independent spillover.

(Note discrepancy near center of 231.281 GHz O_3 line, as DSB τ_z approximation breaks down.)

Sky dip – filtered by $\chi^2 < 2$ (antennas 1,2,3)

- Measured simultaneously, so τ_z should be similar.
- Note that χ^2 filter on dip fit can't help with cal load ripple affecting antenna 3.
- Model is Mauna Kea median profiles scaled to 1170 μ m PWV, 234 DU O₃.
- SCHIAMACHY assimilated ozone over MK on this date was 289 DU.

• Discrepancy from DSB τ_z approximation, and receiver sideband ratio. SMA Advisory Committee – 2010 Oct 12 S. Paine

Current status

- Cabin spectrometers work well and are very reliable.
- Issues with optics and receivers have been identified and mostly understood.
- Cal load performance is significantly improved.
- Algorithms must be developed to minimize sensitivity to irreducible instrumental effects.
- Delay correction tests this year some data already taken.