

# SMA Imaging of the Chemical Segregation toward the AFGL2591 Massive Hot Core

Izaskun Jimenez-Serra

(Harvard-Smithsonian CfA)

Q. Zhang (CfA), J. Martin-Pintado (CAB), S. Viti (UCL) & W.J. de Wit (ESO)

SMA Advisory Committee - 12<sup>th</sup>-13<sup>th</sup> October 2010

#### **Massive Star Formation: Molecular Hot Cores**

Compact (<0.01 pc), dense (>10<sup>6</sup> cm<sup>-3</sup>) and hot (>100 K) condensations One of the earliest stages of high-mass star formation Very rich chemistry: i) Saturated molecules (H<sub>2</sub>O, H<sub>2</sub>S, NH<sub>3</sub>, CH<sub>3</sub>OH) ii) COMs (C<sub>2</sub>H<sub>5</sub>OH, CH<sub>3</sub>OCH<sub>3</sub>, HCOOCH<sub>3</sub>)



Recent SMA examples: Cepheus A HW2 (Brogan et al. 2007) Orion KL (Zapata et al. 2010) AFGL2591 (Bruderer et al. 2009)

> Imaged at linear scales > 1000 AU

van Dishoeck & Blake (1998)

Chemical segregation within hot cores???

# A Hot Core in the Making: AFGL2591

de Wit et al. 2009





B0.5 ZAMS star with L<sub>bol</sub>~2 10<sup>4</sup> LO (van der Tak et al. 1999; Trinidad et al. 2003)

1'-size east-west outflow (Lada et al. 1984; Mitchell et al. 1992)



Cluster of B-type stars with 3 HII regions (Trinidad et al. 2003)

VLA3, the youngest source  $(t_{age} \sim 5 \ 10^4 \text{ yrs}; \text{ Doty et al. 2002})$ 

 $M_{\star}$ ~10 Mo &  $M_{env}$ ~42 Mo

(van der Tak et al. 1999; Boonman et al. 2001)

AFGL2591-VLA3= Massive Hot Core

#### Physical Structure of the AFGL2591 Hot Core

T~200 K

low-density outflow cavity

emission)

SW radio source

(in background, bscured by envelope)

\*



van der Tak et al. (1999), Boonman et al. (2001)

HOT CORE: an inner and hotter envelope + an outer and cooler region

Different chemical regimes at sub-arcsec scales!

#### **SMA Observations**



1 full track in VEX (beam of ~0.35", i.e. ~350 AU)

dopplerTrack -r 218.75 -l -s23

restartCorrelator -R I -s128, uniform velocity resolution of 1.1 kms<sup>-1</sup>

**Observed molecules:** 

| <sup>12</sup> CO, <sup>13</sup> CO, C <sup>18</sup> O | CH <sub>3</sub> OH, H <sub>2</sub> CO | $H_2S$ , SO, SO <sub>2</sub> , OCS, <sup>13</sup> CS | $HC_3N(*)$ , HNCO, DCN |
|-------------------------------------------------------|---------------------------------------|------------------------------------------------------|------------------------|
| CO and                                                | O-bearing                             | S-bearing                                            | N-bearing              |
| isotopologues                                         | molecules                             | molecules                                            | molecules              |

#### SMA 8GHz Passband



#### SMA 8GHz Passband



#### <sup>12</sup>CO emission: Outflowing Gas



Bi-conical structure tracing the base of the large-scale east-west CO outflow.

Consistent with the elongation of VLA3 in the east-west direction (Trinidad et al. 2003).



Jimenez-Serra et al., in preparation



#### Jimenez-Serra et al., in preparation

i) H<sub>2</sub>S and SO: single-peaked feature centered at the radiocontinuum

# Molecular emission in the Hot Core (II)

 $V_{LSR}$ ~-5.5 kms<sup>-1</sup>



ii) SO<sub>2</sub>, OCS and HC<sub>3</sub>N: double-peaked structure circumventing the radiocontinuum peak

# Molecular emission in the Hot Core (III)

V<sub>LSR</sub>~-5.5 kms<sup>-1</sup>



iii) CH<sub>3</sub>OH: Coherent ring-like structure surrounding the radiocontinuum emission

#### Chemical Segregation in AFGL2591

Molecules distributed in concentric shells with H<sub>2</sub>S and SO in an inner shell SO<sub>2</sub>, OCS and HC<sub>3</sub>N in an intermediate envelope CH<sub>3</sub>OH in an outer shell



# ANTAGONIST BEHAVIOR BETWEEN $H_2S$ and $CH_3OH!!!$

# Origin of the Chemical Segregation

- Two different chemical effects:
- i) strong UV-photodissociation: destruction of H<sub>2</sub>S and CH<sub>3</sub>OH
- $H_{2}S+ photon \longrightarrow HS + H$   $H_{2}S+ photon \longrightarrow S + H_{2}$   $CH_{3}OH+ photon \longrightarrow OH+ CH_{3}$
- $CH_3OH+ photon \rightarrow H_2 + H_2CO$

ii) high-temperature gas-phase chemistry: formation of H<sub>2</sub>S ONLY

 $H_2 + HS \longrightarrow H_2S + H$  Highly endothermic!!!

No gas-phase route to form CH<sub>3</sub>OH!!!

#### Chemical Modelling of the AFGL2591 Hot Core

UCL\_CHEM code (Viti et al. 2004)

# of reactions = 1874 (UMIST) # of species = 170 Grain surface + gas-phase reactions

Two step code = 1<sup>st</sup> Collapse (freeze-out)

2<sup>nd</sup> Increase of the Gas temperature + UV-photon illumination

Two point model:

(A) inner and hotter core Radius~175 AU n(H<sub>2</sub>)~10<sup>7</sup> cm<sup>-3</sup> T~1000 K A<sub>v</sub>~18<sup>m</sup>

(B) cooler outer envelope Radius~400 AU n(H<sub>2</sub>)~3 10<sup>6</sup> cm<sup>-3</sup> T~200 K A<sub>v</sub>~23<sup>m</sup>

#### Chemical Modelling of the AFGL2591 Hot Core



### Conclusions

First time that a complete chemical study of a massive hot core is carried out at angular resolutions down to ~350AU.

Chemical segregation in AFGL2591 produced by: - i) UV-photo dissociation of the molecular gas - ii) high-temperature gas-phase chemistry

Crucial to establish the physical structure of hot cores.

The high angular resolution + 8GHz bandwidth of the SMA make it a unique instrument to carry out comprehensive chemical studies toward high-mass star forming regions.