Signal Transmission and Correlator

- Our engineering limitations
- The present SMA system
- Analog IF and transmission upgrades
- New correlator options
- What we want
- Available A/D converters
- The CASPER approach
- Custom backplane corner turning
- Commercial vendors

Table 1. User requirements for SMA wideband correlator.

feature	full offering	initial release	remarks
number of antennas	8		2 Rx each. eSMA support?
total bandwidth	18 GHz	9 GHz	for each of two receivers
number of sidebands	2		upper and lower 18 GHz each
simultaneous receivers	2	1	dual freq. or dual pol. 2308345 GHZ
\# baselines	56	28	28 per Rx, full Stokes
finest continum resolution	0.5 MHz		16,384 channels $/ 9 \mathrm{GHz}$ block
coarsest continuum resolution	70.3 MHz	128 channels $/ 9 \mathrm{GHz}$ block	
finest spectral line res.	25 kHz	best possible SMA res	
\# spectral bands	12	maximum simultaneous hires bands	
zooming band width	500 MHz		widest single spectral line
fastest dump rate	0.65 s		single full Walsh cycle
dynamic range	30 dB		weak spectral line near strong
baseline to baseline isolation	30 dB		crosstalk from baseline to baseline
sideband isolation	25 dB		crosstalk USB<->LSB
maximum baseline delay	2 km		assumes current SMA configuration
\# simultaneous autocorrelations	16	Can autocorrelate each antenna	
phased array bandwidth	8 GHz	4 GHz	4 GHz \times dual pol.
celestial holography mode			might need faster dump

$f_{s}(\mathrm{GSa} / \mathrm{s})$	BW (GHz)	\# bits	Manuf.	Part \#	\sim cost	remarks
5	2.0	8	e2v	EV8AQ160	$\$ 300$	ASIAA board H. Jiang
12.5	8	8	Maxtek	-	$\$ 17 \mathrm{k}$	mature module
20	8	5	e2v	EV5AS210	$\$ 7 \mathrm{k}$	Torres et al., IRAM, 8Gsps
20	13	8	Agilent	-	-	
26	26	$3+$ oflow	Hittite	-	$\$ 8 \mathrm{k}$	'rumored' @ $\sim \$ 8 \mathrm{k}$
30	14	6	Micram	ADC30	$\$ 10 \mathrm{k}$	only demo 12 GSa/s
56	15	8	Fujitsu	CHAIS	-	snapshot, no stream
20	10	1	Hittite	HMC874LC3C	$\$ 40$	clocked comp, no demux
12.5	14	1	Inphi	1385DX	-	latched comp, 1:8 demux
25	18	1	Inphi	25707CP	-	latched comp, no demux

ADC Sample Rate	Chunk Width	\# Chunks per antpol	Total Chunks
5	2	9	144
10	4.5	4	64
14	6	3	48
20	9	2	32

Our current IF processor has 384 chunks

CASPER

*Complex multiply allows for fine delay control and per-channel digital gain control.
White coloured blocks not yet implemented.

- One 10 GbE will carry $\sim 8 \mathrm{~Gb} / \mathrm{s}$, at 4 bits/sample -> $2 \mathrm{Gs} / \mathrm{s}$ or 1 GHz
- There could be 19 separate 10 GbE switches
- Each switch would have 16 inputs (using a standard trick of feeding the F engines through the X engines to exploit the bidirectionality of the ports).
- Total 608 ports @ \$200/port -> \$1.2M

Specialized Backplane for Corner Turning

- This is the approach CARMA and PdBI are using.
- A Vertex 6 has a large number of LVDS ports which can be routed in a backplane.
- Each backplane would need to support 16 station cards and some number of X engines.
- There would be 2-9 back planes depending on the ADC sampling rate.
- In the case of 9 analog channels there might be only 9 station cards.

Summary

- We have limited ability to design high speed digital cards or produce large numbers of Analog channels.
- The situation with high speed A / D converters is unclear now, but several are promised.
- The CASPER approach is appealing. It is being used by other large projects (MeerKat and PAPER).
- For large systems a more custom system design such as Dave Hawkins is doing may be advantageous. We are looking into what he is doing. His designs are motivated by reusing existing hardware, though.
- There are companies who design systems with state of the art FPGAs. We are talking to one.
- \quad See more on the poster by Jonathan Weintroub and Rurik Primiani in the control room or ask for a lab demo.

