

Cambridge, MA 02138

SMA Wideband Upgrade: Status

Cambridge Staff Members:

Jack Barrett, Paul Grimes, Robert Kimberk, Steve Leiker, Scott Paine, Cosmo Papa, Pat Riddle, John Test, Edward Tong

Hilo Staff Members: ALL

ASIAA Staff: Johnson Han, Ming-Jye Wang, ...

Edward Tong

Cambridge, MA 02138

SMA 200 GHz Mixer Chip fabricated by JPL in 1990s. Work horse of SMA during its first decade of operation. IF Bandwidth of SMA: Initially 4-6 GHz (for 2 receivers)

In late 2000s, we introduced the Bandwidth Doubling module which allows 4 - 8 GHz for single receiver operation.

IF Bandwidth was limited by capacity of correlator and output capacitance of SIS mixer.

In 2010, at last Advisory Meeting, we propose to launch a wideband upgrade to provide more IF Bandwidth.

 $\approx \frac{1}{2\pi * 50 * (C_I + C_{tune})} \qquad R_{load} = 50 \quad \text{and} \quad R_{out} >> R_{load}$

To increase IFBW:

- Reduce Junction Capacitance use series junction array.
- Reduce Tuning Capacitance **use newer type of tuning circuit.**

Cambridge, MA 02138

SMA-200 GHz Wideband Mixer Chip. Version 1

- Transformer-coupled 3-junction design
- Synthesizes a transmission line section
- Current Density: 7 kA/cm²
- Device Size: 1.6 µm diameter
- Resembles end-loaded stub

Edward Tong

Cambridge, MA 02138

Cambridge, MA 02138

Laboratory Performance:

•Easy to couple magnetic field (generally operates at 2nd null)

- Rout : 150 200 Ω
- Best Y-factor ~ 3, i.e. T_{DSB} ~ 30 K or hv/k ~ 3

- Smooth P-V except for the lowest LO frequency (too inductive)
- Sensitivity rolls off significantly for IF > ~11 GHz

Cambridge, MA 02138

All SMA-200 Receivers have been upgraded in 2012 and are being used for routine observation.

Cambridge, MA 02138

Test Observation Towards Orion BN/KL LO 226.1 GHz

In the absence of the wideband correlator, the upper IF (> 6 GHz) can be read by the existing correlator using an additional downconverter in the BDA module in each antenna.

Any 2 GHz wide IF spectrum falling between 6 and 14 GHz can be mapped to correlator input.

Cambridge, MA 02138

Bandwidth Doubler Assembly (BDA)

BDA provides access to the expanded IF through an extra down-conversion in each antenna.

Increases throughput for single receiver operation.

Great tool for the commissioning of the SWARM correlator.

As of end 2013, half of SMA-300 is upgraded with IRAM chips and half with ASIAA chips.

Cambridge, MA 02138

Measured data, Tamb=9 K

Wideband SMA-300 GHz Lab Data (in wet cryostat)

Low Noise Factory #LNF-LNC4_16A

Cambridge, MA 02138

Status of SMA-300 Receiver Set

- Upgraded to wideband chips end of 2013.
- Employs CRYO1-12 (Sandy) as LNA
- First unit with LNF amplifier to come online soon which should improve performance at high IF.
- Excellent sensitivity at mid-band (LO ~ 300 GHz)
- Sensitivity roll-off at 345 GHz due to lower conversion efficiency.
- Can be improved with lower leakage device.

Cambridge, MA 02138

On-Telescope Performance of 300 WB Receivers

- SWARM test on May 29
- LO 278.8 GHz
- Most antennas perform within a tight range of Tsys.

	Tsys (11G) / Tsys (5 G)
Ant. 1	0.94
Ant. 2	0.92
Ant. 4	2.00
Ant. 5	0.99
Ant. 6	1.05
Ant. 7	1.01
Ant. 8	0.94

Edward Tong

- Design with 2-junction Array
- A few batches have been made by ASIAA
- Initial measurements performed in lab
- Junction size larger than design: mixer tuned low.
- Plan to install later this year pending on device supply.

Cambridge, MA 02138

Ongoing 200 GHz Refinement

• The 3-junction design shows a drop in sensitivity above 11 GHz IF.

 Initial test with a 4-junction design in conjunction with the LNF amplifier gives good Trx up to 15 GHz IF.

• Refined 200 GHz mixers are expected to be in service by the end of 2014.

Cambridge, MA 02138

Ant 1 IF1

4 - 12 GHz

SWARM Correlator

8 - 10 GHz FC 1.125 GHz

BW 2GHz

x 8 outputs

IF Transmission & Feeding SWARM Correlator

• Possibility of Dual 8 – 10 GHz on SWARM

SMA Advisory Committee Meeting, June 2014

Edward Tong

Cambridge, MA 02138

Ongoing IF System Upgrade

New 4 – 8 GHz Downconverters will allow full SWARM operation on 4 – 12 GHz And/or 2 x (4 – 8 GHz) dual receiver operation.

Medium Term Receiver Development Plans (2015 – 2016)

- Currently SMA allows dual-pol observation at around 345 GHz. Propose to build one more receiver set (210 – 270 GHz) to allow dual-pol operation in the 200 GHz band.
- Upgrade all LNA with 4 16 GHz amplifiers to further expand IF band (requires more SWARM capacity).
- Build more IF processors to keep pace with SWARM expansion.
- Develop YIG-based LO unit to replace Gunn-based unit to streamline tuning.

Cambridge, MA 02138

5-Year Time Scale Receiver Development Plan

• 460/490 GHz SSB Receiver Set

• 2SB Receiver Set for 270 – 370 GHz

Cambridge, MA 02138

G(LSB)/G(USB)

0.1

0.01

460/490 GHz SSB Rx

In 1990s, we have experimented with a 460/490 SSB receiver using a fixed backshort which nulled the image frequency at ~ 475 GHz

Mauna Kea, annual pwv quartiles (0.97 mm / 1.8 mm / 3.5 mm)

Local oscillatotor frequency (GHz)

For projected $T_{SSB} \sim 100$ K, SSB Tsys to source of ~ 500 K (CO 4 - 3) and ~ 800 K (CI line) should readily be achievable.

Cambridge, MA 02138

DSB Rx Vs 2SB Rx with Finite Image Rejection Ratio

Let the S/N ratio achieved by an SSB system be unity and α be the ratio of noise temperature.

 $\alpha = \frac{T_{\text{DSB}} \text{ (DSB system)}}{T_{\text{SSB}} \text{ (SSB system)}}$

S/N ratio achieved by a DSB system compared to an SSB system	Infinite Image rejection ratio	Finite Image Rejection Ratio ρ
Continuum observation (both sidebands used)	$\frac{1}{\sqrt{2}\alpha}$	$\frac{1+\rho}{\alpha\sqrt{2(1+\rho^2)}}$
Spectral line observation (one side band used)	$\frac{1}{2 \alpha}$	$\frac{1+\rho}{2\alpha}$

REF: Thompson & Kerr ALMA Memo #168

Cambridge, MA 02138

DSB Vs 2SB Receivers

Result from AM model for Mauna Kea: assuming 1.4 mm PWV 45-deg source

		230 GHz $T_{\rm atm}$ =32 K & $T_{\rm R}$ =35 K			$\begin{array}{c c} 345 \text{ GHz} \\ T_{\text{atm}} = 85 \text{ K \& } T_{\text{R}} = 50 \text{ K} \end{array}$		
$\alpha = \frac{T_{\rm DSB}}{T_{\rm SSB}}$	$\approx \frac{T_{\rm atm} + T_R}{T_{\rm atm} + 2T_R}$	0.66			0.73		
Image Rejection Ratio ρ		∞	10 dB 0.1	6 dB 0.25	x	10 dB 0.1	6 dB 0.25
DSB : USB Relative Sensitivity	Continuum	1.08	1.17	1.30	0.97	1.06	1.18
	Spectral Line	0.76	0.84	0.95	0.68	0.75	0.86

Edward Tong

• With a given available correlator BW, there is no significant advantage for 2SB observation in continuum for both 230 and 345 GHz.

• Spectral line observation at 345 GHz, however, can be enhanced by a 2SB system.

• For frequencies above 345 GHz, the impact of atmosphere is more significant. 2SB system extending to 370 GHz would be useful.

• There is currently a development of waveguide LO injection receiver development for GLT at the Receiver Lab. So, it would be a parallel development.

• Price tag of such a receiver set would be of the order of \$1 million.

Cambridge, MA 02138

Edward Tong