A

• The array is operated from the summit, Hilo, Cambridge and Taiwan.

- The array is operated from the summit, Hilo, Cambridge and Taiwan.
- Preparation for observing ("priming") is done from around 4:00 PM to 6:00 PM HST every day

- The array is operated from the summit, Hilo, Cambridge and Taiwan.
- Preparation for observing ("priming") is done from around 4:00 PM to 6:00 PM HST every day
- Monday through Friday there are two shifts: First shift 6:00 PM through 2:00 AM, second shift 2:00 AM until around 9:30 AM.

- The array is operated from the summit, Hilo, Cambridge and Taiwan.
- Preparation for observing ("priming") is done from around 4:00 PM to 6:00 PM HST every day
- Monday through Friday there are two shifts: First shift 6:00 PM through 2:00 AM, second shift 2:00 AM until around 9:30 AM.
- Weekends and holidays have a single, grueling, 12ish hour summit shift.

• Monday, Thursday and Friday first shift is run by a summit operator + guest. Tuesday and Wednesday first shift is run by an operator in Hilo.

- Monday, Thursday and Friday first shift is run by a summit operator + guest. Tuesday and Wednesday first shift is run by an operator in Hilo.
- Monday through Thursday, second shift is run by a Cambridge operator. Fridays second shift is run by an operator in Taiwan.

- Monday, Thursday and Friday first shift is run by a summit operator + guest. Tuesday and Wednesday first shift is run by an operator in Hilo.
- Monday through Thursday, second shift is run by a Cambridge operator. Fridays second shift is run by an operator in Taiwan.
- There are occasional weekend second shifts run, particularly when in subcompact.

- Monday, Thursday and Friday first shift is run by a summit operator + guest. Tuesday and Wednesday first shift is run by an operator in Hilo.
- Monday through Thursday, second shift is run by a Cambridge operator. Fridays second shift is run by an operator in Taiwan.
- There are occasional weekend second shifts run, particularly when in subcompact.
- Approximately 100 hours of observing can occur per week.

• Normal science tracks

- Normal science tracks
- Filler tracks / Flux tracks

- Normal science tracks
- Filler tracks / Flux tracks
- DDT tracks (GRBs, comets, coordinated observations, space probe impacts, etc)

- Normal science tracks
- Filler tracks / Flux tracks
- DDT tracks (GRBs, comets, coordinated observations, space probe impacts, etc)
- Reconfiguration activities

- Normal science tracks
- Filler tracks / Flux tracks
- DDT tracks (GRBs, comets, coordinated observations, space probe impacts, etc)
- Reconfiguration activities
- Engineering tests

• Started segregating science data in May 2007

- Started segregating science data in May 2007
- 3940 tracks (until June 2, 2014) ~ 1.52 per day

- Started segregating science data in May 2007
- 3940 tracks (until June 2, 2014) ~ 1.52 per day
- Average 10.6 hours of science data per day

- Started segregating science data in May 2007
- 3940 tracks (until June 2, 2014) ~ 1.52 per day
- Average 10.6 hours of science data per day
- 7 nights out of 8, at least some science data is taken.
 1/8 are lost to bad weather, engineering tests and reconfiguration activities.

Hours of Science Observing per Night

Hours of Science Observing per Night

Elevation During η Car Track

Science Antenna-Hours per Night

Science Antenna-Hours per Night

• We began tracking time lost in a database in May 2007

- We began tracking time lost in a database in May 2007.
- Operators log the events as they occur, lost time is measured in Antenna•Hour units (AH).

- We began tracking time lost in a database in May 2007.
- Operators log the events as they occur, lost time is measured in Antenna•Hour units (AH).
- We try to log what went wrong, not why, because there are often competing theories about why.

- We began tracking time lost in a database in May 2007.
- Operators log the events as they occur, lost time is measured in Antenna•Hour units (AH).
- We try to log what went wrong, not why, because there are often competing theories about why.
- Not very fine grained, for example one bad chunk is logged as lost time (I threw things like that out).

• Assume 800 AH available per week, 7/8 of which go to science.

- Assume 800 AH available per week, 7/8 of which go to science.
- 19.0% lost due to all types of faults

- Assume 800 AH available per week, 7/8 of which go to science.
- 19.0% lost due to all types of faults
- 5.8% lost due to weather

- Assume 800 AH available per week, 7/8 of which go to science.
- 19.0% lost due to all types of faults
- 5.8% lost due to weather
- 6.9% lost due to antenna hardware problems (overwhelmingly drive problems)

- Assume 800 AH available per week, 7/8 of which go to science.
- 19.0% lost due to all types of faults
- 5.8% lost due to weather
- 6.9% lost due to antenna hardware problems (overwhelmingly drive problems)
- 1.6% lost due to warm dewars

- Assume 800 AH available per week, 7/8 of which go to science.
- 19.0% lost due to all types of faults
- 5.8% lost due to weather
- 6.9% lost due to antenna hardware problems (overwhelmingly drive problems)
- 1.6% lost due to warm dewars
- 0.8% lost due to software problems

- Assume 800 AH available per week, 7/8 of which go to science.
- 19.0% lost due to all types of faults
- 5.8% lost due to weather
- 6.9% lost due to antenna hardware problems (overwhelmingly drive problems)
- 1.6% lost due to warm dewars
- 0.8% lost due to software problems
- 1.5% lost due to unclassified errors (sick observers, flat tires, faulty cables, bogus fire alarms, space heaters put next to workstations, Subaru too tall, etc).

• Ignoring weather, 13.2% of available time was lost

- Ignoring weather, 13.2% of available time was lost
- 52% antenna hardware problems (overwhelmingly drives)

- Ignoring weather, 13.2% of available time was lost
- 52% antenna hardware problems (overwhelmingly drives)
- 12% dewar warm

- Ignoring weather, 13.2% of available time was lost
- 52% antenna hardware problems (overwhelmingly drives)
- 12% dewar warm
- 6% software faults

- Ignoring weather, 13.2% of available time was lost
- 52% antenna hardware problems (overwhelmingly drives)
- 12% dewar warm
- 6% software faults
- 3% receiver hardware problems

- Ignoring weather, 13.2% of available time was lost
- 52% antenna hardware problems (overwhelmingly drives)
- 12% dewar warm
- 6% software faults
- 3% receiver hardware problems
- 26% everything else

Total Time Lost

Total Time Lost

Time Lost Due to Weather

Time Lost, Excluding Weather

Time Lost, Excluding Weather

Time Lost, Excluding Weather

Time Lost due to Antenna Hardware

Time Lost due to Antenna Hardware

Time Lost due to Warm Dewars

Time Lost due to Software

Time Lost due to Receiver Hardware

Time Lost due to Power Failures

Power Failures by Year

Year	Number of Power Failures	Time Directly Lost
2007 (May→Dec)	0	0.00 Antenna Hours
2008	1	0.07
2009	5	5.07
2010	3	17.0
2011	3	27.7
2012	13	84.2
2013	14	103.6
2014	14 (projected)	100 (projected)