SMA Operations

SMA Operations

- The array is operated from the summit, Hilo, Cambridge and Taiwan.

SMA Operations

- The array is operated from the summit, Hilo, Cambridge and Taiwan.
- Preparation for observing ("priming") is done from around 4:00 PM to 6:00 PM HST every day

SMA Operations

- The array is operated from the summit, Hilo, Cambridge and Taiwan.
- Preparation for observing ("priming") is done from around 4:00 PM to 6:00 PM HST every day
- Monday through Friday there are two shifts: First shift 6:00 PM through 2:00 AM, second shift 2:00 AM until around 9:30 AM.

SMA Operations

- The array is operated from the summit, Hilo, Cambridge and Taiwan.
- Preparation for observing ("priming") is done from around 4:00 PM to 6:00 PM HST every day
- Monday through Friday there are two shifts: First shift 6:00 PM through 2:00 AM, second shift 2:00 AM until around 9:30 AM.
- Weekends and holidays have a single, grueling, 12ish hour summit shift.

SMA Operations

- Monday, Thursday and Friday first shift is run by a summit operator + guest. Tuesday and Wednesday first shift is run by an operator in Hilo.

SMA Operations

- Monday, Thursday and Friday first shift is run by a summit operator + guest. Tuesday and Wednesday first shift is run by an operator in Hilo.
- Monday through Thursday, second shift is run by a Cambridge operator. Fridays second shift is run by an operator in Taiwan.

SMA Operations

- Monday, Thursday and Friday first shift is run by a summit operator + guest. Tuesday and Wednesday first shift is run by an operator in Hilo.
- Monday through Thursday, second shift is run by a Cambridge operator. Fridays second shift is run by an operator in Taiwan.
- There are occasional weekend second shifts run, particularly when in subcompact.

SMA Operations

- Monday, Thursday and Friday first shift is run by a summit operator + guest. Tuesday and Wednesday first shift is run by an operator in Hilo.
- Monday through Thursday, second shift is run by a Cambridge operator. Fridays second shift is run by an operator in Taiwan.
- There are occasional weekend second shifts run, particularly when in subcompact.
- Approximately 100 hours of observing can occur per week.

Types of Observations

- Normal science tracks

Types of Observations

- Normal science tracks
- Filler tracks / Flux tracks

Types of Observations

- Normal science tracks
- Filler tracks / Flux tracks
- DDT tracks (GRBs, comets, coordinated observations, space probe impacts, etc)

Types of Observations

- Normal science tracks
- Filler tracks / Flux tracks
- DDT tracks (GRBs, comets, coordinated observations, space probe impacts, etc)
- Reconfiguration activities

Types of Observations

- Normal science tracks
- Filler tracks / Flux tracks
- DDT tracks (GRBs, comets, coordinated observations, space probe impacts, etc)
- Reconfiguration activities
- Engineering tests

Operational Efficiency

- Started segregating science data in May 2007

Operational Efficiency

- Started segregating science data in May 2007
- 3940 tracks (until June 2, 2014) ~ 1.52 per day

Operational Efficiency

- Started segregating science data in May 2007
- 3940 tracks (until June 2, 2014) ~ 1.52 per day
- Average 10.6 hours of science data per day

Operational Efficiency

- Started segregating science data in May 2007
- 3940 tracks (until June 2, 2014) ~ 1.52 per day
- Average 10.6 hours of science data per day
- 7 nights out of 8 , at least some science data is taken. $1 / 8$ are lost to bad weather, engineering tests and reconfiguration activities.

Hours of Science Observing per Night

Hours of Science Observing per Night

Antennas per Science Track

Antennas per Science Track

Antennas per Science Track

Elevation During η Car Track

Antennas per Science Track

Science Antenna-Hours per Night

Science Antenna-Hours per Night

Time Lost

- We began tracking time lost in a database in May 2007

Time Lost

- We began tracking time lost in a database in May 2007.
- Operators log the events as they occur, lost time is measured in Antenna•Hour units (AH).

Time Lost

- We began tracking time lost in a database in May 2007.
- Operators log the events as they occur, lost time is measured in Antenna•Hour units (AH).
- We try to log what went wrong, not why, because there are often competing theories about why.

Time Lost

- We began tracking time lost in a database in May 2007.
- Operators log the events as they occur, lost time is measured in Antenna•Hour units (AH).
- We try to log what went wrong, not why, because there are often competing theories about why.
- Not very fine grained, for example one bad chunk is logged as lost time (I threw things like that out).

Time Lost May 2007 - May 2014

- Assume 800 AH available per week, 7/8 of which go to science.

Time Lost May 2007 - May 2014

- Assume 800 AH available per week, 7/8 of which go to science.
- 19.0% lost due to all types of faults

Time Lost May 2007 - May 2014

- Assume 800 AH available per week, 7/8 of which go to science.
- 19.0% lost due to all types of faults
- 5.8% lost due to weather

Time Lost May 2007 - May 2014

- Assume 800 AH available per week, 7/8 of which go to science.
- 19.0% lost due to all types of faults
- 5.8% lost due to weather
- 6.9\% lost due to antenna hardware problems (overwhelmingly drive problems)

Time Lost May 2007 - May 2014

- Assume 800 AH available per week, 7/8 of which go to science.
- 19.0% lost due to all types of faults
- 5.8\% lost due to weather
- 6.9\% lost due to antenna hardware problems (overwhelmingly drive problems)
- 1.6\% lost due to warm dewars

Time Lost May 2007 - May 2014

- Assume 800 AH available per week, 7/8 of which go to science.
- 19.0% lost due to all types of faults
- 5.8\% lost due to weather
- 6.9\% lost due to antenna hardware problems (overwhelmingly drive problems)
- 1.6\% lost due to warm dewars
- 0.8\% lost due to software problems

Time Lost May 2007 - May 2014

- Assume 800 AH available per week, 7/8 of which go to science.
- 19.0% lost due to all types of faults
- 5.8% lost due to weather
- 6.9% lost due to antenna hardware problems (overwhelmingly drive problems)
- 1.6% lost due to warm dewars
- 0.8\% lost due to software problems
- 1.5\% lost due to unclassified errors (sick observers, flat tires, faulty cables, bogus fire alarms, space heaters put next to workstations, Subaru too tall, etc).
$\xrightarrow[0.287]{\bullet}$

Time Lost May 2007 - May 2014

- Ignoring weather, 13.2\% of available time was lost

Time Lost May 2007 - May 2014

- Ignoring weather, 13.2% of available time was lost
- 52\% antenna hardware problems (overwhelmingly drives)

Time Lost May 2007 - May 2014

- Ignoring weather, 13.2% of available time was lost
- 52\% antenna hardware problems (overwhelmingly drives)
- 12\% dewar warm

Time Lost May 2007 - May 2014

- Ignoring weather, 13.2% of available time was lost
- 52\% antenna hardware problems (overwhelmingly drives)
- 12\% dewar warm
- 6% software faults

Time Lost May 2007 - May 2014

- Ignoring weather, 13.2\% of available time was lost
- 52\% antenna hardware problems (overwhelmingly drives)
- 12\% dewar warm
- 6\% software faults
- 3\% receiver hardware problems

Time Lost May 2007 - May 2014

- Ignoring weather, 13.2% of available time was lost
- 52\% antenna hardware problems (overwhelmingly drives)
- 12\% dewar warm
- 6\% software faults
- 3\% receiver hardware problems
- 26\% everything else

Total Time Lost

Total Time Lost

Time Lost Due to Weather

Time Lost, Excluding Weather

Time Lost, Excluding Weather

Time Lost, Excluding Weather

Time Lost due to Antenna Hardware

Time Lost due to Antenna Hardware

Time Lost due to Warm Dewars

Time Lost due to Software

Time Lost due to Receiver Hardware

Time Lost due to Power Failures

Power Failures by Year

Year	Number of Power Failures	Time Directly Lost
2007 (May \rightarrow Dec)	0	0.00 Antenna Hours
2008	1	0.07
2009	5	5.07
2010	3	17.0
2011	3	27.7
2012	13	84.2
2013	14	103.6
2014	14 (projected)	100 (projected)

