SMA: From Galaxies to Circumstellar Disks

Charles Law, Harvard University/CfA

Collaborators: Qizhou Zhang (SAO), Luca Ricci (Cal State Northridge), Glen Petitpas (SAO), Junko Ueda (SAO), Xing Lu (NAOJ), Maria Jiménez-Donaire (SAO), Michael Dunham (SUNY Fredonia), Sean Andrews (SAO), David Wilner (SAO), Chunhua Qi (SAO)

SMA Advisory Committee - July 18, 2018

Outline

- Harvard's Astronomy 191
 - How I first got involved with the SMA

- Molecular emission in interacting galaxy NGC 3627
 - How do excitation conditions of CO(2-1) vary across large-scales?
 - Law+18, ApJ, under review

- Continuum survey of circumstellar disks in Serpens
 - Does high stellar surface density impact dust mass?
 - Law+17, AJ, 154, 6

Ay191 – initial involvement with SMA

- Ay191 in junior year at Harvard College, run by John Kovac
 - One of the half-semester projects incorporated SMA data
- Continued working on Ay191 project after 2017 graduation
 - NGC 3627
- Collaboration with Luca Ricci began the summer after Ay191 on a different SMA project
 - Serpens
- Remote and on-site observing

NGC 3627 (M66)

- Barred spiral galaxy
- Distance ~ 11 Mpc
- Inclination = 61°
- Numerous multi-wavelength studies from X-ray to radio continuum
- Active star formation in nucleus and bar ends
- Goal: To study excitation and mass (H₂) distribution by comparing the ¹²CO(2-1) data from the SMA with the ¹²CO(1-0) data from BIMA

de Vaucouleurs+91, Warren+10, Casasola+11, Lee & Jang 13, Beuther+17

Large-scale ¹²CO(2-1) emission

- Taken in sub-compact, compact, and extended configurations in 2016-2017
- Mosaic of 32 pointings
- Resolution of 2" over the whole galaxy
 - Spatial scales of molecular clouds (100pc)
- Most complete, in terms of resolution and spatial coverage, ¹²CO(2-1) map

Large-scale ¹²CO(2-1) emission

- High-resolution (1") nuclear emission
- But we lose substantial large-scale emission in arms and inter-arm regions...

With 6" *uv*-taper, spiral arms and inter-arm regions are clearly visible

Law+18

Law+18

Line ratio map & SFR

- First large-scale ¹²(GG(at +b)m/ation G(te-0) ratio map
- Moderate-to-high gas ratios in bar ends and in

Right ascension (hh:mm:ss.s)

Warren+10

Line ratio map & SFR

- First large-scale ¹²CO(2-1) / ¹²CO(1-0) ratio map
- Moderate-to-high gas ratios in bar ends and in the southernmost regions
- Use RADEX code to estimate n_{H2} and T_{K}

Quick summary

- Large ¹²CO(2-1) survey of NGC 3627
 - Conspicuous emission in spiral arms and inter-arm regions
- Quantitative understanding of variations in ¹²CO(2-1) / ¹²CO(1-0) line ratio
- Spatial maps of kinetic temperature and H₂ number density
 - Refine H₂ mass estimates
 - Correlations between SFE and physical parameters
- Large-scale $\frac{12}{0}(2-1)$ rotation curve

Serpens star-forming region

- Distance = 415 pc
- Age = 1 3 Myr
- Contains several hundreds of YSOs
- Relatively high stellar surface density
 - Does this lead to tidally-disrupted disks?
 - If so, comparisons with lower stellar density regions of comparable age should reveal lower Serpens masses
- Goal: To obtain an inventory of disk masses in a dense stellar cluster and compare with other well-studied starforming regions

CL A

0 arcmin

0.75 pc

Dzib+2007, Eiroa+08, Oliveira+13, Megeath+16

SMA observations: sample selection

- 1.3 mm continuum survey
- 50% of known Class II YSOs
- Known stellar masses and luminosities
- Observations in compact configuration during March – June, 2016
- Sensitive to disks with $M_{dust} \ge 10 M \downarrow \bigoplus$

Calculating dust masses

- Dust masses from:
 - 10 260 *M*↓⊕
- Median:
 - 5.1↓-4.3↑+6.1 *M*↓⊕
- No trend between stellar mass and dust mass
 - Likely because of high fraction of non-detections

Serpens has dust masses consistent with age

- CDF of Serpens is consistent with other young (1 – 3 Myr) regions
 - Caveat:
 - SMA survey only probed down to 10 $M\downarrow \bigoplus$
- Likely need higher stellar surface density for disk truncation

Quick summary

- Detect thermal emission in 13 / 62 Serpens disks
- No statistical difference between Serpens and Taurus, Cha I, or Lupus
 - No observed $M_{dust} M_*$ trend in Serpens
 - Require higher stellar density for disk tidal truncation (e.g., Rosotti+14)
- Fraction of Serpens disks with $M_{dust} \ge 10 M \downarrow \bigoplus$ is less than 20%
 - Giant planet formation rare or substantially progressed after few Myrs
- ALMA proposal to detect lower mass disks

NGC 3627

- ¹²CO(2-1) survey of NGC 3627
- Quantitative understanding of variations in ¹²CO(2-1) / ¹²CO(1-0) line ratio
- Spatial maps of $\rm T_K$ and $\rm n_{\rm H2}$
 - Refined H₂ mass estimates
 - Correlations between SFE and physical parameters
- Large-scale ¹²CO(2-1) rotation curve

- Detected thermal emission in 13 / 62 Serpens disks
- No statistical difference between Serpens and Taurus Cha I, or Lupus
- Fraction of Serpens disks with $\geq 10 \ M \downarrow \oplus$ is less than 20%
 - Giant planet formation rare or substantially progressed after few Myrs

Law+18, ApJ, under review

Law+17, AJ, 154, 6

Appendix Slide 1: Calculating R_{21,10}

¹²CO(1-0)

¹²CO(2-1)

Appendix Slide 2: Calculating dust masses

• Adopt the standard continuum flux to dust mass prescription:

$$M_{\rm dust} = \frac{F_{\nu}d^2}{\kappa_{\nu}B_{\nu}(T_{\rm dust})}$$

Hildebrand 1983, Beckwith+90

• Scale dust temperature with stellar temperature:

$$T_{\rm dust} = 25 \,{\rm K} \times ({\rm L}_*/{\rm L}_\odot)^{0.25}$$

Andrew+13