Star Formation in our Extreme Galactic Center: Results from the CMZoom Survey

Cara Battersby University of Connecticut @battersbot
#TracingTheFlow

24 µm (Carey+ 2009.), 8 µm and 4.5 µm (Benjamin+20003)

N(H₂) (Battersby+ in prep.), 70 μm (Hi-GAL, Molinari+2010,2011), 8 μm (GLIMPSE, Benjamin+20003)

The Central Molecular Zone: A window into the distant universe

Kruijssen & Longmore 2013

Star Formation Rates of the CMZ

- ^a Approximately $|\ell| < 1^{\circ}$ and $|b| < 0.5^{\circ}$
- ^b Contaminated by main-sequence stars (see Koepferl+2015)

Ash Barnes Liverpool PhD! student ITA Postdoc

Barnes et al. 2017

Star Formation Rates of the CMZ

Star Formation in the CMZ

There are many extreme stars and clusters in the CMZ

The CMZ is currently underproducing stars by ~10

CMZ gas is hot, dense, chemically complex, turbulent, with strong B fields, and the ISRF and CRIR are high → any of these may affect SF

There is NO universal density threshold for Star Formation — but maybe an environmentally dependent one

> **Figures**: ESO/VLT of Young Nuclear Cluster, Brick: Rathborne et al. 2014, Pillai et al. 2015, Dense gas relation: Kauffmann et al. 2016, size-linewidth: Shetty et al. 2012, CMZoom SF threshold: CMZoom in prep.

SMA Legacy Survey of the Central Molecular Zone

 Large primary beam + wide bandwidth + long wavelength + high angular resolution → detect early star formation across a large area
 First survey of the CMZ ever to be able to do so

SMA Legacy Survey of the Central Molecular Zone

 Large primary beam + wide bandwidth + long wavelength + high angular resolution → detect early star formation across a large area
 First survey of the CMZ ever to be able to do so

- * 230 GHz (1.3 mm)
- * 240 arcmin² (above N(H₂) = 10^{23} cm⁻² or $3x10^{22}$ cm⁻²)
- * 4'' (0.2 pc) resolution, $\Delta v \sim 1.1$ km/s
- dust continuum + spectral lines (H₂CO, ¹²CO, ¹³CO, C¹⁸O, SiO, CH₃OH, CH₃CN, etc.): 8+ GHz bandwidth
- * 3 mJy RMS continuum, 0.4 K
- * 550 hours (50 subcompact, 450 compact/custom) over 4 yrs
- * Complement with single-dish (APEX, CSO) observations

Survey overview: Battersby et al. in prep.

- * 230 GHz (1.3 mm)
- * 240 arcmin² (above N(H₂) = 10^{23} cm⁻² or $3x10^{22}$ cm⁻²)
- * 4'' (0.2 pc) resolution, $\Delta v \sim 1.1$ km/s
- dust continuum + spectral lines (H₂CO, ¹²CO, ¹³CO, C¹⁸O, SiO, CH₃OH, CH₃CN, etc.): 8+ GHz bandwidth
- * 3 mJy RMS continuum, 0.4 K
- * 550 hours (50 subcompact, 450 compact/custom) over 4 yrs
- * Complement with single-dish (APEX, CSO) observations

Survey overview: Battersby et al. in prep.

- * 230 GHz (1.3 mm)
- * 240 arcmin² (above N(H₂) = 10^{23} cm⁻² or $3x10^{22}$ cm⁻²)
- * 4'' (0.2 pc) resolution, $\Delta v \sim 1.1$ km/s
- dust continuum + spectral lines (H₂CO, ¹²CO, ¹³CO, C¹⁸O, SiO, CH₃OH, CH₃CN, etc.): 8+ GHz bandwidth
- * 3 mJy RMS continuum, 0.4 K
- * 550 hours (50 subcompact, 450 compact/custom) over 4 yrs
- * Complement with single-dish (APEX, CSO) observations

Survey overview: Battersby et al. in prep.

the off the city

Team:

CfA: Cara Battersby, Eric Keto, Qizhou Zhang, Xing 'Walker' Lu (NAOJ), Mark Graham (Oxford), Nimesh Patel, Volker Tolls, Dennis Lee, Jimmy Castaño, Liz Gehret, Irene Vargas-Salzar, Perry Hatchfield, Daniel Callanan, Elizabeth Gutierrez

Bonn: Jens Kauffmann, Thushara Pillai

Liverpool: Steve Longmore, Daniel Walker (CfA), Jonny Henshaw

University of Colorado, Boulder: John Bally

Heidelberg: Diederik Kruijssen, Ash Barnes NRAO: Betsy Mills, Natalie Butterfield ESO: Adam Ginsburg, Katharina Immer, Leeds: Katharine Johnston Peking University: Luis C. Ho, Perth: Andrew Walsh

CMZ00M Team

Next Generation CMZoomers

The Milky Way Laboratory at UConn Battersby Research Group Fall 2017

CMZOOM TEAM

Track	Observation	# of	Arrav
Number	Date	Antennas	Config.
KI2012*	6/09/2012	7	compact
Pilot1*	5/21/2013	5	subcompact
Pilot2*	8/23/2013	5	subcompact
Pilot3*	7/24/2013	6	compact
111010	8/3/2013	5	compact
	8/9/2013	5	compact
Pilot4*	7/25/2013	6	compact
Dilot5*	8/1/2013	6	compact
FIIOUS	8/2/2013	6	compact
Dilot6*	3/10/2014	7	compact
Photo	3/10/2014	7	subcompact
	5/21/2014	7	subcompact
1	5/25/2014	/	compact-1
2	5/24/2014	7	compact-1
3	5/30/2014	7	compact-1
4	6/02/2014	7	compact-1
5	6/04/2014	7	compact-1
6	6/07/2014	8	compact-1
7	6/10/2014	8	compact-1
8	6/13/2014	8	compact-1
9	6/14/2014	8	compact-1
10	6/15/2014	7	compact-1
	6/20/2014	7	compact-1
11	6/16/2014	7	compact-1
12	6/22/2014	8	compact-1
	7/15/2017 ^a	8	compact-6
13	6/24/2014	8	compact-1
14	6/27/2014	8	compact-1
14	5/30/2016 ^b	7	compact-5
15	7/09/2014	8	compact-1
16	7/10/2014	8	compact 1
10	//10/2014	07	compact-1
17	4/14/2015	7	compact-2
17	4/16/2015	7	compact-2
	5/3/2016	/	compact-5
10	//15/2017*	8	compact-6
18	5/09/2015	6	compact-2
	5/3/2016	7	compact-5
19	5/10/2015	6	compact-2
	5/4/2016°	7	compact-5
	7/31/2017 ^d	8	compact-6
20	5/11/2015	6	compact-2
	5/4/2016°	7	compact-5
	7/31/2017 ^d	8	compact-6
21	7/25/2014	7	subcompact
22	7/27/2014	7	subcompact
23	7/28/2014	7	subcompact
24	7/29/2014	7	subcompact
25	8/04/2014	7	subcompact

12

								CMZ00M OVERVIEW			
12				CMZOOM TEA	М			Region Name			# of
Track	Observation	# of	Array	Track	Observation	# of	Array	and Location	Colloquiual Name	Track Numbers	Pointings
Number	Date	Antennas	Config.	Number	Date	Antennas	Config.	G0 326 0 085	(for side condidate)	1 21	20
KJ2012*	6/09/2012	7	compact	26	5/22/2015	7	compact-2	C0.320-0.085	(iai-side calididate)	1, 21	20
Pilot1*	5/21/2013	5	subcompact		5/30/2016 ^b	7	compact-5	G0.340+0.055	Dust Ridge: Cloud b	2, 21	9
Pilot2*	8/23/2013	5	subcompact	27	5/23/2015	7	compact-2	G0.380+0.050	Dust Ridge: Cloud c	2, 21	9
Pilot3*	7/24/2013	6	compact		6/1/2016 ^e	7	compact-5	G0.412+0.052	Dust Ridge: Cloud d	3, 21	13
	8/3/2013	5	compact	28	5/24/2015	7	compact-2	G0.489+0.010	Dust Ridge: Clouds e/f or Sgr B1-off	3, 4, 5, 21, 22	44
	8/9/2013	5	compact		6/1/2016 ^e	7	compact-5	-	Dust Ridge: Clouds e/f or Sgr B1-off	Pilot2, Pilot5	6
Pilot4*	7/25/2013	6	compact	29	5/26/2015	7	compact-2	G359.734+0.002	(far-side candidate)	6, 22	8
Pilot5*	8/1/2013	6	compact		6/4/2016 ^f	7	compact-5	G359.611+0.018	(far-side candidate)	6, 22	10
	8/2/2013	6	compact	30	6/02/2015	7	compact-2	G0.699-0.028a	SgrB2	7, 8, 9	74
Pilot6 [*]	3/10/2014	7	subcompact		6/4/2016 ^r	7	compact-5	G1.602+0.018	1.6° cloud	10, 23	21
	3/21/2014	7	subcompact	31	3/25/2016	8	compact-4	G1.651-0.050	1.6° cloud	11.23	24
1	5/25/2014	7	compact-1	32	7/10/2015	6	compact-3	G1 737-0 406	1 1° cloud	12 23	7
2	5/24/2014	7	compact-1	22	3/16/2016		compact-4	G359 615 0 243	(isolated massive SE candidate)	12, 23	7
3	5/30/2014 6/02/2014	7	compact-1		2/20/2016	0	compact-3	$G_{0,212,0,001}$	(isolated massive SF candidate)	12, 23	7
5	6/04/2014	7	compact-1	34	6/05/2015	6	subcompact	G0.212-0.001	(isolated massive SF candidate)	12, 25	7
6	6/07/2014	8	compact-1	35	6/07/2015	7	subcompact	G0.316-0.201	(isolated massive SF candidate)	13, 24	7
7	6/10/2014	8	compact-1	36	6/06/2015	7	subcompact	G0.376+0.040	(isolated massive SF candidate)	13, 24	7
8	6/13/2014	8	compact-1	37	6/09/2015	7	subcompact	G0.393-0.034	(isolated massive SF candidate)	13, 24	7
9	6/14/2014	8	compact-1	38	6/10/2015	7	subcompact	G0.068-0.075	Three Little Pigs: Stone Cloud	14, 24	10
10	6/15/2014	7	compact-1	39	6/13/2015	7	subcompact	G0.106-0.082	Three Little Pigs: Sticks Cloud	14, 24	5
	6/20/2014	7	compact-1	40	6/15/2015	7	subcompact	G0.145-0.086	Three Little Pigs: Straw Cloud	14, 24	6
11	6/16/2014	7	compact-1	41	6/17/2015	6	subcompact	G1.085-0.027	1.1° cloud	15, 16, 24, 37	34
12	6/22/2014	8	compact-1	42	6/18/2015	7	subcompact	G0.891-0.048	1.1° cloud	17, 18, 19, 20, 34, 35	82
	7/15/2017 ^a	8	compact-6	43	6/22/2015	7	subcompact	G359.863-0.069	20 km s ⁻¹ cloud	26, 38	18
13	6/24/2014	8	compact-1	44	5/31/2017	7	subcompact	G359.889-0.093	20 km s ⁻¹ cloud	27, 28, 36	49
14	6/27/2014	8	compact-1	45	7/23/2015	6	compact-3	_	20 km s ⁻¹ Cloud	Pilot1, Pilot3	8
	5/30/2016 ^b	7	compact-5		3/28/2016	8	compact-4	G0 001-0 058	50 km s^{-1} Cloud	29.35	24
15	7/09/2014	8	compact-1	46	//2//2015	6	compact-3	00.001-0.050	50 km s^{-1} Cloud	Dilot? Dilot/	4
16	//10/2014	8	compact-1	47	4/30/2016		compact-5	- C250 865 10 022	(for side condidete)	20.27	4
17	4/14/2015	7	compact 2	47	5/01/2016	7	compact 5	0339.803 ± 0.022	(haida a frame SarC to 20hana aland)	20, 29	0
17	5/3/2016 ^b	7	compact-5	48	5/07/2016	7	compact-5	G359.648-0.133	(bridge from SgrC to 20kms cloud)	30, 38	10
	7/15/2017 ^a	8	compact-6	40	5/02/2016	7	compact-5	G359.484-0.132	SgrC	31, 32, 38	28
18	5/09/2015	6	compact-2	50	5/08/2016	7	compact-5	-	SgrC	Pilot1, Pilot4	3
	5/3/2016 ^b	7	compact-5	51	5/10/2016	6	compact-5	G0.253+0.016	Brick	KJ2012, Pilot6	6
19	5/10/2015	6	compact-2	52	5/14/2016	7	compact-5	G0.070-0.035	(h2co bridge from sgra to dust ridge)	32, 33, 37	39
	5/4/2016°	7	compact-5		5/17/2016	7	compact-5	G0.619+0.012	SgrB2 NW	39, 40, 41, 45, 46, 47,	175
	7/31/2017 ^d	8	compact-6	53	5/28/2016	7	compact-5			48, 49, 50, 51, 52	
20	5/11/2015	6	compact-2	54	5/29/2016	7	compact-5	G0.014+0.021	Arches e1	43, 52	1
	5/4/2016°	7	compact-5	55	5/21/2016	7	compact-5	G0.054+0.027	Arches w1	43, 57	4
	7/31/2017 ^d	8	compact-6	56	5/22/2016	7	compact-5	G1.68-0.09	1.6° cloud	41. 53	8
21	7/25/2014	7	subcompact	57	5/23/2016	7	compact-5	G1.67-0.13	1.6° cloud	41.53	6
22	7/27/2014	7	subcompact	58	6/5/2016	7	compact-5	G1.038-0.074	1.1° cloud	42 53 54 55	46
23	7/28/2014	7	subcompact	59	6/07/2016	7	compact-5	G359 948-0 052	Circumnuclear Disk	42 43 55 56 57	40
24	1/29/2014	7	subcompact	60	6/11/2016	1	compact-5	C0 714 0 100	SorP2 avtanded	12, 13, 33, 30, 37	04
25	8/04/2014	1	subcompact	61	6/17/2016	8	compact-5	00.714-0.100	Sgrb2 extended	45, 44, 57, 58, 59, 60, 61	94

Pointing comparison -

SMA color scale, smoothed ALMA data as contours

Survey overview: Battersby et al. in prep.

"Bricklet" D

Cold dust – submillimeter

Dan Walker postdoc at NAOJ Chile

"Bricklet" D

Cold dust – submillimeter

Dan Walker postdoc at NAOJ Chile

Ash Barnes postdoc at ITA

N(H₂) from HiGAL Battersby+, in prep., 70 μm from HiGAL, Molinari+ 2011, 8 μm from GLIMPSE (Benjamin+ 2003)

- High-mass starforming core.
- Contains exotic H₂CO and SiO masers, as well as CH₃OH Class II and OH maser emission
- Ginsburg et al. 2015

Star Formation in the CMZ

SMA 1.3 mm continuum

N(H₂), 70 μm, 8 μm SMA 1.3 mm continuum

SMA 1.3 mm dust continuum

Is it star forming?

- ✓ Dense gas
- ✓ Shocked, highly excited gas
- \Box Virial ratio < 2
- Power-law tail in N-PDF
- Outflow, localized hotcore chemistry, masers,
 - UCHII regions...

3 рс

om

Is it star forming?

- ✓ Dense gas
- ✓ Shocked, highly excited

SCOUSE line fitting Jonny Henshaw, MPIA

SMA 1.3 mm dust continuum

3 рс

Is it star forming?

- ✓ Dense gas
- Shocked, highly excited gas
- \Box Virial ratio < 2
- Power-law tail in N-PDF
- Outflow, localized hot-

core chemistry, masers, UCHII regions...

Gravity vs. pressure (thermal and turbulence)

SMA 1.3 mm dust continuum

Is it star forming?

- ✓ Dense gas
- \checkmark Shocked, highly excited

gas

 \boxtimes Virial ratio < 2

- Power-law tail in N-PDF
- Outflow, localized hotcore chemistry, masers, UCHII regions...

SMA 1.3 mm dust continuum

3pc

- Is it star forming?
- ✓ Dense gas
- \checkmark Shocked, highly excited

gas ⊠ Virial ratio < 2

- ⊠ Power-law tail in N-PDF
- ⊠ Outflow, localized hotcore chemistry, masers, <u>UCH</u>II regions...

Why is the SFR low in the CMZ? Is it star forming? ✓ Dense gas ✓ Shocked, highly excited

gas

High levels of turbulence¹ (and maybe more) are preventing star formation

/irial ratio < 2 Iw tail in N-PDF localized hotemistry, masers, gions...

Star Formation in the CMZ

Uncovering Hidden Star Formation

Lu et al 2015, 2017

Xing "Walker" Lu Postdoc at NAOJ

Star Formation in the CMZ

Chemistry in the CMZ

Star Formation in the CMZ

Detailed Study of Core Properties

Dan Walker postdoc at NAOJ Chile

core gas temperatures of about 50-200 K

Walker et al. 2018

Catalog and Simulated Observations

Perry Hatchfield PhD student at UConn

CMZoom Core Catalog: Hatchfield et al. in prep

Catalog and Simulated Observations

Perry Hatchfield PhD student at UConn

OM

CMZoom Core Catalog: Hatchfield et al. in prep

Star Formation in the CMZ

Low-level isolated star formation

Is it star forming?

- ✓ Dense gas
- ✓ Shocked, highly excited gas
- ✓ Virial ratio < 2
- ✓ Power-law tail in N-PDF
- ✓ Outflow or localized hot-core chemistry

SMA 1.3 mm Dust Emission

Low-level isolated star formation

SMA 1.3 mm Dust Emission

Low-level isolated star formation

Low-level isolated star formation

Star Formation in our Extreme Galactic Center: Results from the CMZoom Survey

New survey, CMZoom, mapped all the highest column density gas in inner 500 pc and:

- * Uncovered hidden star formation
- * CMZ cores demonstrate very different excitation/chemistry
- * CMZ cores are on the same massradius relation as disk cores
- * High levels of turbulence seem capable of inhibiting SF in the CMZ
- Meaning that SFR should depend on environment

Extra Slides

Krumholz & Kruijssen 2015

Torrey, Hopkins et al., 2017

Structure Identification

Z Som

SCOUSE line fitting Jonny Henshaw Liverpool

Tidal compression of clouds

Tidal compression of clouds

Why is SF low? - Gas properties

Gas is dense, n> 10⁵ cm⁻³

Guesten et al. 1983, Zylka et al. 1992, Serabyn et al. 1992, Walmsley et al. 1986

Gas is chemically complex, with ~mG magnetic fields, high ISRF, and high CRIR

complex: e.g. Rathborne et al., 2014, Requena-Torres et al. 2008, magnetic fields: e.g. Pillai et al. 2015, Yusef-Zadeh & Morris 1987, high ISFR and CRIR: e.g. Clarke et al. 2013, Goto et al. 2013, etc.

The dense gas is hot (>65 K), and 10% is 400 K Ginsburg et al. 2016, Mills et al. 2013, Immer et al. 2016, Ott et al. 2014, Krieger et al. in prep.

The gas is turbulent ($\Delta v \sim 10$ km/s, $\mathcal{M} \sim 10$ -40) Shetty et al. 2012, Rathborne et al. 2015, Kauffmann et al. 2017 Ginsburg et al. 2016, Mills et al. 2013, Immer et al. 2016, etc.

Battersby, Longmore, Bally, Barnes, Ginsburg, & Mills in prep.

Battersby, Longmore, Bally, Barnes, Ginsburg, & Mills in prep.

- HCN is well-correlated with dense gas overall in the CMZ variations would only yield a 10% error in the dense gas mass
 - However, there is a lot of scatter (0.75 dex)
 - Some clouds are under-bright or over-bright by factors of 2-3
 - This is bad if you are looking at an AGN or shock-dominated region of a galaxy
- A lot of the HCN comes from more diffuse gas
- HNCO is better correlated with dense gas

Mills & Battersby 2017