Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES)

Michael M. Dunham Assistant Professor State University of New York at Fredonia

Presentation to the SMA Advisory Committee Tuesday, July 17, 2018

Origins of Stellar Masses

The origins of the stellar initial mass function (IMF) is one of the great unsolved problems in stellar astrophysics

The IMF and dense core mass function (CMF) are similar in shape, with the IMF shifted to about 3x lower masses

IMF set by CMF?

Alves et al. 2007; Offner et al. 2014, PPVI

- 1. When, where, and how do cores and disks fragment into multiple systems?
- 2. What role do disks play in the transfer of mass from cores to stars?
- 3. To what extent do outflows regulate the protostellar mass accretion process?

Diagram adapted from M. Persson

Dunham & Stephens (co-Pls), Myers, Bourke, Pokhrel, Tobin, Offner, Arce, Goodman, Jorgensen, Kristensen, Pineda, Vorobyov

<u>MASSES</u> – <u>Mass A</u>ssembly of <u>Stellar Systems and their Evolution</u> with the <u>SMA</u>

1st data release paper published by Stephens et al. 2018, delivering science-ready data products

First <1000 au scale survey of complete protostellar population in a single cloud

- (sub)millimeter survey of all (~70) protostars in Perseus (d = 230 pc)
- Approx. 600 hr over 3 years (Fall 2014 Spring 2017), spans ASIC \rightarrow SWARM upgrade
- Targets multiple dense gas & outflow tracers at 230 & 345 GHz, plus the continuum
- Two SMA configurations (SUB+EXT) 200 AU resolution, >4000 AU max. scale

The Statistical Power of MASSES

Stephens, Dunham, et al. (2018)

Hierarchical Fragmentation of a Molecular Cloud

Pokhrel, Myers, Dunham, et al. (2018)

Fragmentation is a multiscale, hierarchical process

Different physical mechanisms may be relevant on different size scales

Question addressed by MASSES: What causes "envelopes" (~1000 AU structures) to fragment into multiple protostars

Alignment of Multiple Systems

Wide multiple systems are randomly aligned, an unexpected result that agrees with theoretical predictions of turbulent fragmentation

> Lee, Dunham, et al. (2016) Offner, Dunham, et al. (2016)

Fragmentation in L1448-N

Lee, Dunham, Myers, et al. (2015)

Number of <100 AU fragments within 1000 AU SMA objects:

- **Does not** correlate with β (rotational/gravitational energy)
- **Does not** correlate with σ (non-thermal velocity dispersion)
- Does correlate w/thermal Jeans number (core mass / Jeans mass)

Hierarchical Fragmentation of a Molecular Cloud

Pokhrel, Myers, Dunham, et al. (2018)

At all levels, number of fragments correlates with thermal Jeans number

At all levels, number of fragments is also less than predicted by thermal Jeans number

Including non-thermal support predicts no fragmentation on large scales, and has no effect on small scales

Fragmentation appears to be best described as "inefficient thermal Jeans fragmentation"

y-axis: number of fragments within parent (divided by surface area of parent) x-axis: thermal Jeans number of parent (divided by surface area of parent)

Hierarchical Fragmentation of a Molecular Cloud

Pokhrel, Myers, Dunham, et al. (2018)

At all levels, number of fragments correlates with thermal Jeans number

At all levels, number of fragments is also less than predicted by thermal Jeans number

Including non-thermal support predicts no fragmentation on large scales, and has no effect on small scales

Fragmentation appears to be best described as "inefficient thermal Jeans fragmentation"

Kinematics vs. multiplicity in progress. Consistency with turbulent fragmentation under investigation.

MASSES is About More than Fragmentation...

Outflow morphology evolution Dunham, Stephens, et al. (in prep)

Outflow/filament (mis)alignment Stephens et al. (2017)

Protostellar disk masses Andersen et al. (in prep) MASSES enables key progress on open questions requiring a statistical approach, and is triggering followup theoretical and observational (ALMA, VLA, etc.) work

MASSES Publications

- 1. Lee, Dunham, Myers, et al., "Mass Assembly of Stellar Systems and their Evolution with the SMA. Multiplicity and the Physical Environment in L1448N", 2015, ApJ, 814, 114
- 2. Lee, Dunham, Myers, et al., "*Misalignment of Outflow Axes in the Proto-multiple Systems in Perseus*", 2016, ApJL, 820, 2
- 3. Offner, Dunham, Lee, Arce, & Fielding, "*The Turbulent Origin of Outflow and Spin Misalignment in Multiple Star Systems*", 2016, ApJL, 827, 11
- 4. Frimann, Jørgensen, Dunham, Bourke, et al., "Protostellar accretion traced with chemistry: High-resolution C¹⁸O and continuum observations towards deeply embedded protostars in Perseus", 2017, A&A, 602, 120
- 5. Stephens, Dunham, Myers, Pokhrel, et al., "*Alignment Between Protostellar Outflows and Filamentary Structure*", 2017, ApJ, 846, 16
- 6. Pokhrel, Myers, Dunham, Stephens, et al., "*Hierarchical Fragmentation in the Perseus Molecular Cloud: From the Cloud Scale to Protostellar Objects*", 2018, ApJ, 853, 1
- 7. Stephens, Dunham, Myers, et al., "*Mass Assembly of Stellar Systems and their Evolution with the SMA 1.3 mm Subcompact Data Release*", 2018, ApJS, in press
- 8. Andersen, Stephens, Dunham, et al., "*The Mass Evolution of Protostellar Disks and Envelopes in the Perseus Molecular Cloud*", 2018, ApJ, to be submitted

<u>Spanning the ASIC → SWARM Upgrade</u>

Extra SWARM LINES in 230 GHz lower sideband

Origins of Fragmentation: A Survey Approach

Kinematics (rotation & turbulence) vs. multiplicity revealed by the VLA

It is in fact likely that accounting for the diversity in core properties is crucial to improving the match between theory and observations of the conversion of gas to (binary) stars.

- Goodwin et al. (2007), PPV

C¹⁸O (2-1) 1st moment maps Scale bars: 2500 AU

Data Reduction and Imaging

	А	В	с	D	E	F	G	i	н	1		J		к				
1	Field	RA	Dec	Target(s)	Common Name(s)	Velocity	Rosolowsky	et al. (2008) \$	SUB Data Obtai	ned SUB Data Pass	sed	EXT Data Obtain	ed EXT D	ata Pass				
2	cfc-b1bN	03:33:21.1	9 31:07:40.60	cfc-b1bN	B1-bN	~7.2			/ear 1	Year 1		Year 1	Year 1					
3	cfc-I1448irss2e	03:25:25.6	6 30:44:56.70	11448irs2e	L1448-IRS2E	4.1		N	/ear 1	Year 1		Year 2	Year 2					
4	cfc-I1451mm	03:25:10.2	1 30:23:55.30	11451	L1451-mm	4.0		N	/ear 1	Year 1		Year 2	Year 2					
5	cfc-pb45	03:29:07.7	0 31:17:16.80	cfc-pb45	Per-Bolo 45	~9		١	/ear 1			Year 1	Year 1					
6	cfc-pb58	03:29:25.4	6 31:28:15.00	cfc-pb58	Per-Bolo 58	~7.3		١	/ear 1	Year 1		Year 1	Year 1					
7	Per1	03:43:56.5	3 32:00:52.90	Per1	HH211	9.0	R161?	N	/ear 1	Year 1		Year 1						
8	Per10	03:33:16.4	5 31:06:52.50	Per10		6.4?	R119?	۱	/ear 2	Year 2 (400s cra	ate5 problem)							
9	Per11	03:43:56.8	5 32:03:04.60	Per11	IC348-mm	8.7	R162	N	/ear 1	Year 1		Year 2						
0	Per12	03:29:10.5	0 31:13:31.00	Per12	IRAS4A	7.3	R75	١	/ear 1	Year 1		Year 1	Year 1					
11	Per13	03:29:12.0	4 31:13:01.50	Per13	IRAS4B	7.3/7.1	R75/R78	<u>۱</u>	/ear 1	Year 1		Year 1	Year 1					
2	Per14	03:29:13.5	2 31:13:58.00	Per14	IRAS4C	~7.5	R??	١	/ear 1	Year 1		Year 1	Year 1					
3	Per15	03:29:04.0	5 31:14:46.60	Per15		7.4	R68	N	/ear 2, Year 2	Year 2								
4	Per16	03:43:50.9	6 32:03:16.70	Per16, Per28		8.6	R160	N	/ear 1	Year 1		Year 2						
15	Per17	03:27:39.0	9 30:13:03.00	Per17	RNO-15 FIR	4.8	R32	<u> </u>	/ear 2	Year 2								
16	Per18	03:29:10.9	9 31:18:25.50	Per18, Per21		8.6	18=R77		/ear 1	Year 1		Year 2						
17	Per19	03:29:23.4	9 31:33:29.50	Per19		7.5	R84? 87?	<u> </u>	/ear 1	Year 1		Year 2	Year 2					
8	Per2	03:32:17.9	5 30:49:47.60	Per2	IRAS 03292	6.9	R103	· · · · · · · · · · · · · · · · · · ·	/ear 1	Year 1		Year 1	Year 1					
9	Per20	03:27:43.2	3 30:12:28.80	Per20	L1455-IRS4	5.0	R34	· · · · · · · · · · · · · · · · · · ·	/ear 2	Year 2								
0	Per22	03:25:22.3	3 30:45:14.00	Per22	L1448-IRS2	4.1	R7	<u> </u>	/ear 1	Year 1		Year 1, Year 2	Year 2					
21	Per23	03:29:17.1	6 31:27:46.40	Per23		7.5	R81	, ,	/ear 2	Year 2 (400s cra	ate5 problem)							
22	Per24	03:28:45.3	0 31:05:42.00	Per24		7.2?	R50?	×	/ear 2	Year 2 (400s cra	ate5 problem)							
3	Per25	03:26:37.4	6 30:15:28.00	Per25		5.15	R22	, ,	/ear 2	Year 2								
			А		в		с	D	E	F		G		н	1			
		1	Date (Track)	Date, Start/End	Time (UT)		Target	Assessmen	t Array	Tau	Quality Com	ments		Missing Ant	New 230 GHz Calibration			
		2	140904 07:20:08 (1)	09/04/2014 07:1	8:19 - 20:26:08 (13 hr)		Per27 Per13	Satisfactory	Extended	tau: 0.12 ~ 0.15	Tau was just g stable. Suffici Antenna 5 40	good enough. The p ent calibration data 0 was not working.	hase was exist. GP	None	Done by Mike (7/03/2015)			
		з	140905_07:31:26 (2)	09/05/2014 07:2	9:51 - 20:57:13 (13.5 h	r)	Per26Per42 Per33	Satisfactory	Extended	tau started from 0.14 and gradually decreased to 0.1	Tau was highe probably OK. 18UT. Hopefu dataGP	er than I wanted, bu Phase was OK unti Ily there is enough I	t still I around pandpass	None				
		4 140908_08:18:15 (3) 09/08/2015 08:17:05 - 17:01:08 (10.75 hr)		hr)	Per2 Per5	Satisfactory	Extended	tau ~ 0.1	Tau was as go OK. A couple antennas, but	problems with warn overall not a bad tr	nase was ning ackGP	None	Done by Mike (6/03/2015)					
		5	140907_06:16:26 (4)	09/07/2014 06:0	6:20 - 17:54:41 (~12 h	")	Per12 Per14	Satisfactory	Extended	tau ~ 0.11	Only 6 antenn pretty good6	as, but tau and pha GP	se were	6				
		6	140908_06:06:05 (6)	09/08/2014 05:0	4:20 - 19:45:25 (14.5 h	n	cfc-pb58 cfc-pb45	Unsatisfacto	ry Extended	tau varying between 0.1 and 0.15	night, but not 'pass'GP	e were OK for most long enough to call	this a					
		8	141118_02:15:14 (8)	11/18/2014 02:14	4:25 - 14:09:56 (12 hr)		Per26Per42 Per33	Satisfactory	Subcompact	tau ~ 0.1	Tau was good Sufficient calit baseline solut	l enough, phase wa pration data exist. S ionGP	s stable. till need a	6	Done by Mike (6/20/2015)			
		9	141120_03:58:22 (7)	11/20/2014 04:0	0:16 - 14:15:41 (10.3 h	r)	Per27 Per13	Satisfactory	Subcompact	tau ~ 0.09	Tau was good calibration dat	l. Phase was stable ta existGP	. Sufficient	6	Done by Mike (7/01/2015)			
																		ĺ
					A			в	С	D	E		F	G	н	1	J	
		10								230 GHz Contin	uum		120	:O (2-1) (dv	v = 0.5 km/s)	1	3CO (2-1) (dv = (.3
									1sigma rms	beam size	beam PA	A 1sigm	a rms	beam siz	te beam PA	1sigma rms	beam size	
					Sou	rce		Notes	(mJy/beam)	(arcsec)	(degrees	s) (K)		(arcsec)	(degrees)	(K)	(arcsec)	
					SUB - Per1				4.98	4.306 x 3.258	-12.40					0.16	4 365 x 3 330	

UB - Per1	4.98	4.306 x 3.258	-12.40				0.16	4.365 x 3.330	-12.3
SUB - Per2	8.79	4.254 x 3.345	-15.80						
SUB - Per3	3.32	5.906 x 4.953	57.50						
SUB - Per4									
UB - Per5	3.82	4.221 x 3.351	-15.60						
SUB - Per6									
SUB - Per9	2.95	5.302 x 3.186	-60.00						
SUB - Per11	6.61	4.301 x 3.249	-13.40	0.13	4.325 x 3.248	-14.60	0.16	4.35" x 3.32"	-12.7
SUB - Per12 (NGC1333 IRAS4A)	58.00	5.027 x 3.229	-30.50	0.16	4.047 x 3.590	5.57	0.17	4.12" x 3.62"	12.4
UB - Per13 (NGC1333 IRAS4B)	24.30	4.087 x 3.254	-11.00	0.12	4.209 x 3.235	-15.33	0.18	3.88" × 3.29"	-0.7
SUB - Per14 (NGC1333 IRAS 4C)	10.90	5.080 x 3.204	-31.90						
SUB - Per15	3.02	5.295 x 3.227	-61.10						
SUB - Per16Per28	2.19	4.300 x 3.255	-13.10	0.14	4.420 x 3.247	-15.40	0.16	4.36" x 3.33"	-12.6
UB - Per18Per21	4.68	4.672 x 3.334	-26.20	0.19	4.998 x 3.287	-28.80	0.22	4.67" x 3.41"	-25.5
SUB - Per19	1.83	4.165 x 3.348	-8.90						
SUB - Per22									
SUB - Per25	3.19	3.282 x 2.967	63.60						
SUB - Per26Per42	2.67	4.060 x 3.265	-11.93	0.25	4.085 x 3.232	-13.89	0.17	4.28 x 3.35	-19.0
SUB - Per27 (NGC1333 IRAS2A)									
SUB - Per29	5.62	4.197 x 3.015	-16.80						
SUB - Per33	5.51	4.046 x 3.250	-12.22	0.16	4.066 x 3.236	-13.65	0.17	4.26 x 3.33	-19.0
SUB - Per35									

к

beam PA

(degrees)