SMA in the mm/submm Landscape

David J. Wilner

SMA Science

- High resolution imaging and spectroscopy at millimeter and submillimeter wavelengths are essential tools to advance understanding of a broad range of astrophysical phenomena
- SMAstrasetreansformedatields from planet+formation/to/high-z

mm/submm Telescopes

SMA Development Vision

Committee on Future of SMA (2010)

- increase bandwidth
 - priority: 345 GHz band
- initiate multi-beam program
- add 2 more antennas

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

Maximize SMA power for a diversity of science drivers, capitalizing on Maunkea site, affordable advances in technology, rapid upgrade timescale, and expertise.

SMA Development Vision

Committee on Future of SMA (2010)

- increase bandwidth
 - priority: 345 GHz band
- initiate multi-beam program
- add 2 more antennas

ALMA Development Working Group (2018)

- increase bandwidth
 - priority: Bands 6 and 7
- longer baselines
- focal plane arrays
- add 12m antennas
- large single dish antenna

SMA wideband upgrade concept

	receiver	bands \times	total	continuum rms (μJy)			
year	bandwidth	pols	bandwidth	230 GHz	$345~\mathrm{GHz}$		
2004	$2 \text{ GHz} \times 2 \text{ sb}$	2	8 GHz	600	1250		
2017	$8 \text{ GHz} \times 2 \text{ sb}$	2	$32~\mathrm{GHz}$	230	520		
2019	$12 \text{ GHz} \times 2 \text{ sb}$	2	$48 \mathrm{~GHz}$	190	425		
2022	$16 \text{ GHz} \times 2 \text{ sb}$	4	$128 \mathrm{~GHz}$	140	330		

- Science: unique combination of wide bandwidth for spectral coverage and uniform high resolution, $\lambda/\Delta\lambda \approx 2.5 \times 10^6$
 - core 230 and 345 GHz bands (matched to Maunakea site)
 - Continuum: 16x faster or 4x deeper, and + higher fidelity imaging
 - Spectral lines: 16x grasp = more spectrum simultaneously
- Practical: better calibration, homogeneous data archive
- Dedicated open space to exploit new opportunities

Astronomer's view of wSMA spectral coverage

SMA Science Workshop

→ wSMA Science White Paper

wSMA Science White Paper

SMA Memo #165

Science with the wideband Submillimeter Array: A Strategy for the Decade 2017–2027

ed. D. Wilner contributing authors: E. Keto, G. Bower, T.C. Ching, M. Gurwell, N. Hirano, G. Keating, S.P. Lai, N. Patel, G. Petitpas, C. Qi, TK Sridharan, Y. Urata, K. Young, Q. Zhang, J.-H. Zhao

Figure 1: The eight 6-meter antennas of the Submillimeter Array on Maunakea, Hawaii (photo by N. Patel).

Contents

- 1 Executive Summary
- 2 The Submillimeter Array in the ALMA Era

3 Ultra-wideband Performance Improvements

3.1	Continuum:	Sensitivity, 1	Imaging, and	Angular	Resolution
2.0	Linea Mono	Spectral Cor	Forto	. C	

4 Ultra-wideband Science Examples

4.1	Spectr	ral Line Surveys			
	4.1.1	Star Forming Regions			
	4.1.2	High Redshift Galaxies			
	4.1.3	CII Intensity Mapping			
	4.1.4	Evolved Stars			
	4.1.5	Planetary Atmospheres			
4.2	Time 1	Domain Studies			
	4.2.1	Polarized emission from $SgrA^*$			
	4.2.2	Comets			
	4.2.3	Gamma Ray Bursts			
4.3	Magne	etic Field Imaging and Star Formation .			

5 Additional Science Modes

- 5.1 VLBI: The Event Horizon Telescope
- 5.2 Opportunities: Higher Frequencies, Multi-Beam Receivers
- 6 References

wSMA Science Opportunities

Spectral line surveys

in effect, every observation is an imaging spectral line survey Solar System, star-forming regions, evolved stars, galaxies

Time Domain / Transients

Increased instantaneous sensitivity and/or wide spectral coverage very advantageous for time variable phenomena *comets, AGN activity, gamma-ray bursts*

Everything the SMA does now, better and faster including efficient wide-field mapping observations

Spectral Line Surveys

- **Galactic Star Forming Regions**
- Comprehensive multi-line studies that exploit chemical complexity and gas motions to probe the early evolution of young stellar objects
- Galaxies Near and Far
- Cold gas inventories for star formation physics, chemical fingerprints of starburst and nuclear activity, high-z [CII] intensity Papping Stars
- Large samples of systems for unbiased views of chemical processes, mass-loss and wind physics, ISM enrichment

Time Doman / Transients

HCN (jets)

Simultaneous multi-freq Faraday rotation measures for time variability of black hole accretion rate (context for EHT)

Comets

Separate time variable coma and jet, spatially and spectrally, in many species

GRB afterglows

Reverse shock synchrotron properties: B-field, Γ Requires rapid ToO response (minutes) Potentially detectable to z=10 or higher

More Science Modes

Key station in global Event Horizon Telescope

- Imaging supermassive black holes at event horizen scales
- SWARM designed for VLBI
- One of the few sites with reliable 345 GHz conditions
- Non-imaging observations? with >bandwidth than ALMA?

Opportunities for new instrumentation

- upgrade concept explicitly incorporates open space
- modest scale allows SMA to drive/adapt to innovation
- potential path for new collaborations
- examples: multi-beam? higher freq band? lower freq band?

wSMA Special Session at 2018 January AAS meeting

125. Science with the Wideband Submillimeter Array Organizer(s): David Wilner (Smithsonian Astrophysical Observatory) 2:00 PM - 3:30 PM; National Harbor 3 (Gaylord at National Harbor)

wSMA in the ALMA Era

- Forefront science that does not require the full ALMA 12 meter array sensitivity and/or angular resolution
 - Flexible scheduling, rapid response, quick turnaround, large programs
- Seed studies for ALMA follow-up
 - Select targets, refine methods, optimize return, take risks
- Access to northern sky
 - − Ω (no ALMA) ≈ 15% of sky (nearest L* gal, starburst, qso, JWST NEP,...)
- Key station in EHT
 - Correlating directly with ALMA
- Expert education and training
 - Millimeter/submillimeter astronomy and radio interferometry
- Test bed for new technologies and techniques
 - Engine for innovation

Expert Education and Training

- hands-on, all aspects, in the CfA and Maunakea environments
- former SMA postdocs and students \rightarrow

© 2016. The American Astronomical Society. All rights reserved.

RESOLVING GIANT MOLECULAR CLOUDS IN NGC 300: A FIRST LOOK WITH THE SUBMILLIMETER ARRAY

CHRISTOPHER M. FAESI^{1,3}, CHARLES J. LADA¹, AND JAN FORBRICH^{1,2} ¹ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA ² University of Vienna, Austria *Received 2015 October 23; accepted 2016 February 15; published 2016 April 21*

© 2017. The American Astronomical Society. All rights reserved.

A millimeter Continuum Size–Luminosity Relationship for Protoplanetary Disks

Anjali Tripathi¹, Sean M. Andrews¹, Tilman Birnstiel², and David J. Wilner¹

¹ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA; atripathi@cfa.harvard.edu, sandrews@cfa.harvard.edu ² University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Scheinerstr. 1, D-81679 Munich, Germany *Received 2017 February 2; revised 2017 June 21; accepted 2017 June 26; published 2017 August 10*

© 2018. The American Astronomical Society. All rights reserved.

Polarization Properties and Magnetic Field Structures in the High-mass Star-forming Region W51 Observed with ALMA

Patrick M. Koch¹, Ya-Wen Tang¹, Paul T. P. Ho^{1,2}, Hsi-Wei Yen³, Yu-Nung Su¹, and Shigehisa Takakuwa^{4,1}

² East Asian Observatory (EAO), 660 N. Aohoku Place, University Park, Hilo, HI 96720, USA

³ European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching, Germany

⁴ Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University,

1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065, Japan

Received 2017 April 7; revised 2017 November 27; accepted 2017 December 24; published 2018 March 5

SMA

An Extraordinary Outburst in the Massive Protostellar System NGC 6334I-MM1: Quadrupling of the Millimeter Continuum

T. R. Hunter¹, C. L. Brogan¹, G. MacLeod², C. J. Cyganowski³, C. J. Chandler⁴, J. O. Chibueze^{5,6,7}, R. Friesen⁸, R. Indebetouw^{1,9}, C. Thesner⁷, and K. H. Young¹⁰

Resolved Millimeter Observations of the HR 8799 Debris Disk

David J. Wilner¹, Meredith A. MacGregor^{1,2,6}, Sean M. Andrews¹,

A. Meredith Hughes³, Brenda Matthews⁴, and Kate Su⁵

² Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road, Washington, DC 20015, USA

Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459, USA

⁴ National Research Council of Canada, Herzberg Astronomy and Astrophysics Programs, 5071 West Saanich Road, Victoria, BC, V9E 2E7, Canada

Steward Observatory, University of Arizona, Tucson, AZ 85721, USA

Received 2017 December 21; revised 2018 January 30; accepted 2018 January 31; published 2018 March 7

Disk inner edge location puts dynamical constraint on mass of planet b

50

40

30

20

[wJy]

density

-Iux

e)

 $[CII]^{2}P_{3/2}^{-2}P_{1/2}^{-1/2}$

SMA

A dusty star-forming galaxy at z = 6 revealed by strong gravitational lensing

Jorge A. Zavala^{1,2*}, Alfredo Montaña³, David H. Hughes¹, Min S. Yun⁴, R. J. Ivison^{5,6}, Elisabetta Valiante⁷, David Wilner⁸, Justin Spilker⁹, Itziar Aretxaga¹, Stephen Eales⁷, Vladimir Avila-Reese¹⁰, Miguel Chávez¹, Asantha Cooray¹¹, Helmut Dannerbauer^{12,13}, James S. Dunlop⁶, Loretta Dunne^{6,7}, Arturo I. Gómez-Ruiz³, Michał J. Michałowski¹⁴, Gopal Narayanan⁴, Hooshang Nayyeri¹¹, Ivan Oteo^{6,5}, Daniel Rosa González¹, David Sánchez-Argüelles¹, F. Peter Schloerb⁴, Stephen Serjeant¹⁵, Matthew W. L. Smith⁷, Elena Terlevich¹, Olga Vega¹, Alan Villalba¹, Paul van der Werf¹⁶, Grant W. Wilson⁴ and Milagros Zeballos¹

wSMA in the ALMA Era

- Forefront science that does not require the full ALMA 12 meter array sensitivity and/or angular resolution
 - Flexible scheduling, rapid response, quick turnaround, large programs
- Seed studies for ALMA follow-up
 - Select targets, refine methods, optimize return, take risks
- Access to northern sky
 - − Ω (no ALMA) ≈ 15% of sky (nearest L* gal, starburst, qso, JWST NEP,...)
- Key station in EHT
 - Correlating directly with ALMA
- Expert education and training
 - Millimeter/submillimeter astronomy and radio interferometry
- Test bed for new technologies and techniques
 - Engine for innovation

End