Wideband Receiver Upgrade for the Submillimeter Array (SMA)

C.-Y. Edward Tonga, Ray Blundella, Chih-Chiang Hanb, Tse-Jun Chenb, Wei-Chun Lub, and Ming-Jye Wangb

Summary

- First generation SMA receivers employed end-loaded stub type single junction SIS mixer with large IF output capacitance (> 0.3 pF).
- Original IF for the SMA was 4 – 6 GHz, but later expanded to 4 – 8 GHz.
- Gain compression was observed when the receiver was terminated with an ambient calibration load.
- Second generation SMA receivers are based on series-connected distributed SIS mixers with lower IF capacitance.
- The upgraded SIS mixers employ junction arrays made up of 2 – 4 SIS junctions to provide usable photon step width of ~ 3 mV. This increases both the dynamic range and the IF bandwidth of the receiver.
- SMA receivers can currently be operated over an IF of 4 – 12 GHz. Future goal of operation is 4 – 16 GHz.
- Wideband receivers for 200 and 300 GHz bands have competitive on-sky noise performance and they are currently used for routine astronomical observations in the SMA.
- SMA Wideband Astronomical ROACH2 Machine (SWARM) correlator will unleash full bandwidth capability of the SMA wideband receivers.

200 GHz SIS Receiver

- 3 junction array
- \(J_c \) 7 kA/cm\(^2\)
- \(\Phi_{SIS} \) 1.7 µm
- \(c J_c R_n \sim 3 \)
- \(C_{IF} \sim 0.25 \) pF

Laboratory Performance

- Actual IF BW ~ 11 GHz
- Min Tsys ~ 75 K (DSB)
- Sub-mJy sensitivity easily achievable
- Pending upgrade to 4-junction array and LNF 4-16 GHz amplifier

300 GHz SIS Receiver

- Use of 4-16 GHz LNA in conjunction with lower IF capacitance allows broader IF bandwidth, BW bottleneck is then the isolator.
- The SIS junction array is tuned by the CPW connecting the first 2 junctions.

Spectrum from Orion BN/KL

- Dec. 2013 Test observation.
- LO frequency 337 GHz.
- USB spectrum from a single baseline.
- IF 4 - 12 GHz, constructed from 2 GHz scans provided by current SMA correlator.
- Continuous IF coverage will be provided by upcoming SWARM digital backend.

a Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA.
b Academic Sinica, Institute for Astronomy & Astrophysics, Taipei, Taiwan.